avav在线看_国产性色AV高清在线观看_狠狠干影院樱桃视频整合全网影视:_成人av中文字幕_欧美久久一级_91久久丝袜国产露脸动漫

March 2, 2022

Optimized Hot Runner Systems Deliver Improved Color Change Performance

As brands market greater variety, require shorter production runs, and change designs more frequently in consumer packaging and other applications; there is increased focus on changing color at processing. To maximize productivity and profit, processors understand the need to examine their processes and procedures to optimize color change performance.

Hot runners can play a major role in optimizing the injection molding color change process. We will outline the concepts that impact color change and examine how they influence a hot runner’s design. We will also look at the benefits of color change sequencing and the emergence of new hot runner technologies that can be leveraged to reduce color change time. Finally, we will examine several case studies which illustrate how real-world modifications in hot runner solutions can significantly improve color change performance.

A process run’s collection of ejected parts, changing from blue to white.

A process run’s collection of ejected parts, changing from blue to white.

For Brand Owners, Color is King

To many large brand owners and OEMs color is a key differentiator, central to consumer appeal and product identity. For example, this can be observed in beverage packaging with a specific shade of red used for Coca-Cola while a specific shade of blue identifies Pepsi. As a result, many consumer-focused companies can be extremely sensitive about color, as it is tightly woven into their iconic brand image.

Outside our industry, color change may seem simple and have little need for concern. Replace the old color with the new, and keep making product – how hard can it be? Naturally, the complexities of manufacturing eliminate the ease. Material must be cycled through the melt delivery system, replacing material of one color with material of a different color. While it would be convenient and efficient to replace color in a single shot, it is highly unlikely due to the nature of the product and equipment. Downtime and scrapped material are a given when changing color to meet the requirements of a customer and brand. A poor color change process can result in extra wasted material, greater downtime, and increased scrap. These all translate to higher production costs.

 

Two Viewpoints on Volume

It is important to clarify how hot runner volume can be measured in two different ways.  The first type of volume is “melt volume.”  Melt volume is measured in conventional units like cubic centimeters or cubic inches.  This is the unit of volume we work with in our everyday lives.  This considers the total volume of melt in the entire hot runner.  The second type of hot runner volume is “shot count” and measured in shots.  This considers the number of shots needed to travel from the entry of the sprue to the gate entering the cavity.  Hot runner shot count is directly dependent on the molding application, specifically part weight and mold cavitation, which make up the shot size.  Hot runner shot count is also related to a hot runner’s melt volume.  For example, if a hot runner is interchangeable between two molds, the hot runner’s melt volume stays the same for both applications.  The mold with heavier parts will decrease the hot runner’s shot count.  While shot count can be calculated in fractions of a shot, it can only be experienced in whole numbers.  Like everything in our industry, neither system attribute is concrete, but best used to make considerations and comparisons.

Concepts and Considerations for Changing Colors

The first concept or consideration for hot runners and color change is to minimize replaced volume.  Smaller things are easier to move than larger things.  This also rings true for the volume of molten plastic inside a hot runner – a smaller residence volume of molten plastic inside the hot runner is easier to displace than a larger residence volume.  This volume is most directly managed by the hot runner’s melt channel size, as there typically few options to consider when it comes to a hot runner’s optimal melt path layout.  It is easy to minimize melt channel size, but decreasing size typically means an increase in pressure.  During hot runner design, melt channel size must be carefully considered based on the resin, expected processing conditions, and known equipment limits.

 

This graphic shows the machine nozzle interfaced with a hot runner’s sprue bushing.  The top shows a matching melt channel interface, while the middle and bottom show mismatches and their potential melt stagnation areas.

The second concept or consideration is to minimize or eliminate of dead spots or “no flow” areas in the melt path. In these areas old color might snag, pool, or hide and be difficult to move through the melt stream.  Old color in these stagnant areas may unexpectedly burp or bleed into the melt stream during production of the new color, making reject parts.  Material in the stagnant area may also degrade due to heat exposure and cause streaks.  These risks are not just specific to the hot runner, as the melt channel diameters at the hot runner sprue and machine barrel interface should also align and match as closely as possible.

The third concept or consideration is to follow a procedure and set expectations.  It is generally known that many variables can affect color change and influence the ability to meet expectations.  Process settings can help color change greatly, so it is important to know if they can be changed.  Designing a specific color change schedule and procedure can directly manage the ability to meet these expectations. Overall, it is good to have a plan if you are planning to change colors.

How Hot Runner Gates and Nozzles Influence Color Change   

An important influence on color change is the gate bubble’s melt volume.  The gate bubble is the mass of molten plastic surrounding the nozzle tip, between the seal ring and the gate orifice.  During processing, this area consists of resin which is neither fully solid or molten. The resin contacting the gate material is cool and highly viscous, thermally insulating the melt which flows from the nozzle through the gate. This volume of the bubble depends on the nozzle design and gate style. It may have a stagnant or “backflow” region that can hinder color change. This is an example where the previous color can hide or be difficult to displace.  This volume can be minimized with a tip insulator. This is a piece made from a relatively soft material that withstands relatively high temperature and consumes the volume of the bubble. With it, melt can be flushed out and replaced more quickly for faster color change. This adopts the first the second concepts of color change: reducing melt volume and eliminating stagnant flow areas.

The gate bubble of most hot runner gates is the mass of molten plastic between the hot runner’s nozzle tip and the gate orifice.

The gate bubble of most hot runner gates is the mass of molten plastic between the hot runner’s nozzle tip and the gate orifice.

A gate bubble is nearly unavoidable.  Certain nozzle tip designs discard or “zero out” the gate bubble by sealing at the cavity interface. This eliminates the gate bubble altogether so no tip insulator is necessary as the melt flows directly into the cavity.

The nozzle at the left shows an assembly where the gate bubble is consumed by a tip insulator (brown).  The nozzle at the right nullifies the gate bubble by participating as part of the cavity geometry.

The nozzle at the left shows an assembly where the gate bubble is consumed by a tip insulator (brown).  The nozzle at the right nullifies the gate bubble by participating as part of the cavity geometry.

How Hot Runner Manifold Design Influences Color Change

Another influence to color change with hot runners is the manifold design.  This applies to any hot runner, regardless of nozzle or gating style. Manifold melt volume and shot count is a necessity for any hot runner application, with some manifolds containing more melt than others.  That amount of material interferes with color change, as it must be replaced. The amount of molten material can be managed with melt channel diameter. To change color, this can be done faster if the amount of material to be replaced is minimized. However, a hot runner design must also consider the pressure requirement of the application. While volume (melt channel diameter) should be minimized, it should not be so far that the pressure limit of the machine’s injection unit is exceeded.

This graphic shows the frozen plastic from a melt channel, removed from a manifold.  The hot zone of the manifold (left) shows a thinner frozen layer than the cold zone (right).

This graphic shows solidified plastic removed from a manifold melt channel after a few cycles of black-to-white color change.  The hotter location (left) shows a thinner layer of old color than the colder location (right).

Thermal profile is another factor to consider when designing manifolds for color change. In addition to influencing injection pressure, a uniform thermal profile minimizes cold spots where the plastic boundary layer thickness at the melt channel wall can increase. The increased thickness at this cold location can cause difficulty when changing color, acting like a “dead spot” from the second concept.

Based on field experience and thorough analysis, Husky has developed robust manifold heater guidelines and applies them to all custom hot runner systems. By consistently applying these guidelines, thermal variation is minimized along the entire melt path.  Thermal profile is also optimized by adjusting heater wraps, number of heater zones, thermocouple placement, melt channel layout, heat sink position, and manifold shape. The combination of these variables is validated by using finite element analysis to ensure minimal thermal variation. All of Husky’s manifold designs are FEA validated for thermal profile.

How Hot Runner Manufacturing Influences Color Change

The hot runner’s manifold manufacturing is the final influence on color change. While the first two influences on color change cover application and component design, manifold manufacturing focuses on how the product is taken from the concept to the press. Thermal uniformity is an important consideration and one way to minimize variation is through automated heater installation. This ensures consistent performance from each zone and each manifold. In addition to resistance checks and power testing at final assembly, another way to validate manifold heaters is by using thermal imaging.

Manufacturing has a major impact on minimizing dead spots in the melt flow path. Husky examined the effectiveness of manifold manufacturing systems by measuring and comparing the color change timing of sample parts with various build conditions and resins. Husky tested manufacturing influences by building several manifolds with different levels of variation, running color change procedures, and comparing their performance. The results showed the best color change was achieved by applying our principles, gating, and minimizing manufacturing variation.

Investment in Color Change Sequencing Pays Dividends

Color change is dependent on many things, one of which is the color itself.  Each color typically requires different amounts of material to change from one to another.  While it is relatively fast to change from dark colors to light colors, the other way around usually requires more material.  It is important to develop an understanding of the part and colors required for each application, even running trials to understand the color change needs for each color across the product matrix. Production planning is one of the most effective ways to execute color change. This can be done by planning to run colors in a set sequence, typically gradual color change from dark to light and back to dark, leveraging schedule and equipment on the production floor. This element of color change performance seems obvious but is often overlooked. If production allow some flexibility, the order of color change can have a substantial impact on resin usage and downtime. For example, in one case study a molded closure not optimized for color change took 57.6 kg of material to complete a full color change cycle. By changing the run order of those same colors, color changeover was reduced from 600 to 400 shots and resin usage was reduced 33%.  If this information and flexibility is available, production scheduling can take advantage of both to maximize productivity.

Many parts are molded with the same mold, hot runner, and material - but different colors.  The top sequence above used a haphazard color plan.  The bottom sequence used an optimized color plan, with a color change downtime reduction of 33%.  Turnover between colors should be studied at validation to confirm when the best sequence to minimize operation costs.

Many parts are molded with the same mold, hot runner, and material - but different colors.  The top sequence above used a haphazard color plan.  The bottom sequence used an optimized color plan, with a color change downtime reduction of 33%.  Turnover between colors should be studied at validation to confirm when the best sequence to minimize operation costs.

Many parts are molded with the same mold, hot runner, and material - but different colors.  The top sequence above used a haphazard color plan.  The bottom sequence used an optimized color plan, with a color change downtime reduction of 33%.  Turnover between colors should be studied at validation to confirm when the best sequence to minimize operation costs.

Beyond the Hot Runner

Along with hot runner design considerations and scheduling, other technologies can be leveraged to decrease color change time. A system-based approach includes the injection molding machine and hot runner temperature controller working together to deliver more consistent and efficient color change when using purging compounds. By utilizing the Husky Altanium controller and its large touchscreen monitor, color change instructions can be integrated into the Altanium software and provide precise guidance at the user’s fingertips.  

Additional features such as soak timers and automatic temperature adjustments coupled with cycle count input from the molding machine and automated optimized procedures, can ensure correct steps are followed every time. This delivers consistent and optimized results no matter the machine or the experience level of the operator.

Altanium temperature controller features can be utilized to streamline color change processes.

Altanium temperature controller features can be utilized to streamline color change processes.

 

Case Studies

A pair of case studies illustrate how hot runner features can be optimized for improved color changeovers. On a 32-cavity polypropylene closure mold, changing from amber to natural color required up to nine thousand cycles in 28 hours until a part of acceptable color was produced. Husky implemented adjustments and changes which reduced the color changeover to 215 cycles in 40 minutes. This saved over 22,000 pounds of scrapped material and more than 650 hours of machine time.

In another case study, a two-shot eight-cavity mold undertook one of the most challenging color changes, going from black to white with two different grades of polypropylene. After modifications and changes, color change time was reduced from 1100 cycles to 240 - saving over five thousand pounds of material and 150 hours of machine time per year.

 

Conclusion

Color change optimization clearly delivers significant value in terms of productivity and profitability. As brand owners and OEMs continue to focus on consumer appeal and product differentiation, processors of injection molded parts will seek the best optimization strategies to improve color changeover times. Optimized hot runner systems stand ready to meet the challenge with improved designs, manufacturing methods, and new technologies that will keep color change a step ahead in injection molding.

主站蜘蛛池模板: 国产成人=a=a在线视频|欧美三级不卡在线观线看|误杀2免费观看|freesex欧美喷水|日本国产在线|成人一二区 | 台湾久久网|99久久精品免费看国产四区|亚洲一区二区三区在线视频观看|一区二区三区四区在线免费视频|红桃视频二区|国产久艹视频 | 性开放少妇xxxxⅹ视频蜜桃|成人深夜福利视频在线观看|依人久久久|葵司在线视频|不卡视频在线|免费看黄色大片 | 激情欧美一区二区三区免费看|亚洲青青草|国产精品免费久久久久影视|日本亚洲欧洲免费无码|国产精品XXX大片免费观看|国产一级片网 | 亚洲免费永久|91看片网址|亚洲=aV片毛片成人观看|国产精品视频内|在线=a=a=a|国产美女主播一级成人毛片 | 国产精品麻豆高潮刺激=a片|国产=aⅴ无码专区亚洲=av|草草在线视频|亚洲日韩精品无码专区加勒比|国产精品激情|成全视频观看免费高清第6季 | 亚洲精品毛片一区二区|在线理论片|精品久久久无码中文字幕边打电话|久久久久久久|亚洲中文字幕无码第一区|亚洲欧美偷自乱图片 | 91免费版|黄色在线亚洲|99国产精|黄色=a级|黄色视频一级毛片|清清草在线视频 | 业余自由性别成熟偷窥|国产夫妻原创自拍|91精品区|青青青爽视频在线观看|黄片毛片在线|朋友的姐姐2在线观看 | 亚洲伦理一区二区三区|在线观看=aV网站永久免费观看|狠狠色婷婷丁香五月|色翁荡息又大又硬又粗又爽|中文色视频|成年人免费看的 | 欧美z0zo人禽交|欧美大杂交18p|国内精自线一二区永久|久久久久久久久国产一区|国产v=a免费精品观看精品|eeuss影院www在线观看 | 女女同性=aV片在线播放免费|91久久香蕉囯产熟女线看|在线观看国产日韩亚洲中|97se国产在线公开视频|日本欧美视频|国产成人短视频在线观看 | 国产草草影院|欧美性生交大片免费看|67194熟妇在线观看永远免费|偷偷碰偷偷鲁免费视频|欧美性生交xxxx乱大交3|激情麻豆视频 | 亚洲v天堂v手机在线|午夜成年视频|FREEZEFR=aME丰满少妇|日本天堂网站|亚洲热综合|欧美V=a亚洲V=a在线观看日本 | 亚洲精品=av中文字幕在线|九州影视在线免费|国产国产国产国产系列|免费在线高清=av|被老汉耸动呻吟双性美人|男女草逼视频 亚洲精品毛片一区二区|在线理论片|精品久久久无码中文字幕边打电话|久久久久久久|亚洲中文字幕无码第一区|亚洲欧美偷自乱图片 | 在线播放成人网站|国产真实younv在线|久久久久国色=av免费看|国产第一页线路1|国产高清免费=av在线|国产一区二区成人h动漫精品 | 青青草日韩|亚州=aⅤ中文=aⅴ无码=aⅴ|日本免费=a∨片免费|久久久亚洲=aV无码精品一区|热久久亚洲|农村妇女毛片精品久久久 | 欧美激情乱人伦|操综合网|在线中文字幕=av|熟女高潮视频|www.夜色321.com|国产一级淫片免费放大片 | 12一14幻女bbwxxxx在线播放|自拍偷拍第5页|成人小视频免费看|在线看黄色片|亚洲精品国产品国语在线观看|欧美中文字幕在线视频 | 亚洲狠狠婷婷综合久久蜜桃|国产成人精品福利网站人|爆乳美女脱内衣18禁裸露网站|免费一级特黄特色大片|欧美成人亚洲|国产精品麻豆v=a在线播放 | #NAME?|日韩三区在线观看|三级一区|绝顶潮喷绝叫在线观看|粉嫩欧美一区二区三区|国产成人=aV无码永久免费一线天 | 亚洲线精品一区二区三区|亚洲综合中文|特级一级片|在线观看国产视频一区|国产乱码卡1卡二卡3卡四卡|国产v亚洲v天堂无码网站 | 国产成人=av一区|日本大片免=a费观看视频老师|在线观看高清视频|一机毛片|久久九九兔免费精品6|久久爽精品区穿丝袜 | 五月婷婷开心中文字幕|亚洲专区一区二区三区|日韩三级黄色|超碰人人c=ao|久久97超碰色中文字幕|久在草影院 | 青青草日韩|亚州=aⅤ中文=aⅴ无码=aⅴ|日本免费=a∨片免费|久久久亚洲=aV无码精品一区|热久久亚洲|农村妇女毛片精品久久久 | 国产乱码一区二区三区|久久婷婷麻豆国产91天堂|无毛一区二区|日韩久久综合|午夜影院福利社|日韩字幕一区 | 玖玖热麻豆国产精品图片|91婷婷色|欧美h视频|国产伊人免费|99影视|久久国产日韩欧美 | 日本欧美xxx|抖音奶片无罩子52秒回放|日韩福利=av|最好免费的高清视频剪辑软件|国产绳艺SM调教室论坛|黑人巨大精品欧美一区二区区 | 69xxxx国产|一级一片|久久久久97|亚洲日本v=a午夜中文字幕|狠狠干伊人网|国产人妻精品区一区二区三区 | 精品久久久久久777米琪桃花|蜜芽亚洲=aV无码精品色午夜|成人碰碰视频|99国产精品久久久久老师|内地级=a艳片高清免费播放|久久久久爽爽爽爽一区老女人 | 在线一二三|国产真实偷乱视频在线观看|西西人体www大胆高清|久久九九精品99国产精品|精品久久久久久久|亚洲人人插 | 男同免费|久久久久久草莓香蕉步兵|亚洲女女女同性VIDEO|免费的=av不用播放器的|黄频网站在线观看|久久久88 | 精品亚洲永久免费精品鬼片影片|国产色啪午夜免费福利|亚洲国产1区|国产福利不卡|9熟女PRO内射|91精品婷婷色国产综合 | 久久久久高潮毛片免费全部播放|精品国产一区二区三区久久狼黑人|7878视频在线观看|国产日韩精品视频一区二区三区|#NAME?|91p九色成人 | 国产在线短视频|最近免费中文字幕mv免费高清|四虎国产精品一区二区|毛片韩国|99re6这里只有精品视频在线观看|青春草在线 | 奇米综合四色77777久久|精品精品国产自在97香蕉|啦啦啦在线观看|成人无码区免费=a片久久鸭软件|最近中文字幕完整视频高清1|国产精品视频免费播放 | 男女日批免费视频|九九免费观看全部免费视频|日韩精品免费一区二区夜夜嗨|中文字幕在线播放第一页|中国少妇xxxx|欧洲人体超大胆露私视频 | 激情欧美综合|野花香日本在线观看免费视频|99re热久久这里只有精品34|亚洲精品久久夜色撩人男男小说|videos少妇|五月综合缴情婷婷六月 国产最新在线观看|久久黄页|在线不卡日本v二区707|成人免费一区二区三区在线观看|欧美又粗又大色情hd堕落街传奇|免费观看全黄做爰的视频 | 97超碰成人在线|欧美精品一区二区久久婷婷|在线观看免费人成视频播放|久久福利=av|精品一区不卡|久久水蜜桃视频 | 日韩免费v片在线观看|国产一区精品二区|777777在线视频观看|国产一区二区色|4438x五月|日韩精品一区二区在线视频 | 天天干天天插伊人网|久久久久久一级片|粉嫩久久久久久久极品|人人插人人搞|五月丁香六月综合缴清无码|国产精华=aV午夜在线 |