avav在线看_国产性色AV高清在线观看_狠狠干影院樱桃视频整合全网影视:_成人av中文字幕_欧美久久一级_91久久丝袜国产露脸动漫

March 2, 2022

Optimized Hot Runner Systems Deliver Improved Color Change Performance

As brands market greater variety, require shorter production runs, and change designs more frequently in consumer packaging and other applications; there is increased focus on changing color at processing. To maximize productivity and profit, processors understand the need to examine their processes and procedures to optimize color change performance.

Hot runners can play a major role in optimizing the injection molding color change process. We will outline the concepts that impact color change and examine how they influence a hot runner’s design. We will also look at the benefits of color change sequencing and the emergence of new hot runner technologies that can be leveraged to reduce color change time. Finally, we will examine several case studies which illustrate how real-world modifications in hot runner solutions can significantly improve color change performance.

A process run’s collection of ejected parts, changing from blue to white.

A process run’s collection of ejected parts, changing from blue to white.

For Brand Owners, Color is King

To many large brand owners and OEMs color is a key differentiator, central to consumer appeal and product identity. For example, this can be observed in beverage packaging with a specific shade of red used for Coca-Cola while a specific shade of blue identifies Pepsi. As a result, many consumer-focused companies can be extremely sensitive about color, as it is tightly woven into their iconic brand image.

Outside our industry, color change may seem simple and have little need for concern. Replace the old color with the new, and keep making product – how hard can it be? Naturally, the complexities of manufacturing eliminate the ease. Material must be cycled through the melt delivery system, replacing material of one color with material of a different color. While it would be convenient and efficient to replace color in a single shot, it is highly unlikely due to the nature of the product and equipment. Downtime and scrapped material are a given when changing color to meet the requirements of a customer and brand. A poor color change process can result in extra wasted material, greater downtime, and increased scrap. These all translate to higher production costs.

 

Two Viewpoints on Volume

It is important to clarify how hot runner volume can be measured in two different ways.  The first type of volume is “melt volume.”  Melt volume is measured in conventional units like cubic centimeters or cubic inches.  This is the unit of volume we work with in our everyday lives.  This considers the total volume of melt in the entire hot runner.  The second type of hot runner volume is “shot count” and measured in shots.  This considers the number of shots needed to travel from the entry of the sprue to the gate entering the cavity.  Hot runner shot count is directly dependent on the molding application, specifically part weight and mold cavitation, which make up the shot size.  Hot runner shot count is also related to a hot runner’s melt volume.  For example, if a hot runner is interchangeable between two molds, the hot runner’s melt volume stays the same for both applications.  The mold with heavier parts will decrease the hot runner’s shot count.  While shot count can be calculated in fractions of a shot, it can only be experienced in whole numbers.  Like everything in our industry, neither system attribute is concrete, but best used to make considerations and comparisons.

Concepts and Considerations for Changing Colors

The first concept or consideration for hot runners and color change is to minimize replaced volume.  Smaller things are easier to move than larger things.  This also rings true for the volume of molten plastic inside a hot runner – a smaller residence volume of molten plastic inside the hot runner is easier to displace than a larger residence volume.  This volume is most directly managed by the hot runner’s melt channel size, as there typically few options to consider when it comes to a hot runner’s optimal melt path layout.  It is easy to minimize melt channel size, but decreasing size typically means an increase in pressure.  During hot runner design, melt channel size must be carefully considered based on the resin, expected processing conditions, and known equipment limits.

 

This graphic shows the machine nozzle interfaced with a hot runner’s sprue bushing.  The top shows a matching melt channel interface, while the middle and bottom show mismatches and their potential melt stagnation areas.

The second concept or consideration is to minimize or eliminate of dead spots or “no flow” areas in the melt path. In these areas old color might snag, pool, or hide and be difficult to move through the melt stream.  Old color in these stagnant areas may unexpectedly burp or bleed into the melt stream during production of the new color, making reject parts.  Material in the stagnant area may also degrade due to heat exposure and cause streaks.  These risks are not just specific to the hot runner, as the melt channel diameters at the hot runner sprue and machine barrel interface should also align and match as closely as possible.

The third concept or consideration is to follow a procedure and set expectations.  It is generally known that many variables can affect color change and influence the ability to meet expectations.  Process settings can help color change greatly, so it is important to know if they can be changed.  Designing a specific color change schedule and procedure can directly manage the ability to meet these expectations. Overall, it is good to have a plan if you are planning to change colors.

How Hot Runner Gates and Nozzles Influence Color Change   

An important influence on color change is the gate bubble’s melt volume.  The gate bubble is the mass of molten plastic surrounding the nozzle tip, between the seal ring and the gate orifice.  During processing, this area consists of resin which is neither fully solid or molten. The resin contacting the gate material is cool and highly viscous, thermally insulating the melt which flows from the nozzle through the gate. This volume of the bubble depends on the nozzle design and gate style. It may have a stagnant or “backflow” region that can hinder color change. This is an example where the previous color can hide or be difficult to displace.  This volume can be minimized with a tip insulator. This is a piece made from a relatively soft material that withstands relatively high temperature and consumes the volume of the bubble. With it, melt can be flushed out and replaced more quickly for faster color change. This adopts the first the second concepts of color change: reducing melt volume and eliminating stagnant flow areas.

The gate bubble of most hot runner gates is the mass of molten plastic between the hot runner’s nozzle tip and the gate orifice.

The gate bubble of most hot runner gates is the mass of molten plastic between the hot runner’s nozzle tip and the gate orifice.

A gate bubble is nearly unavoidable.  Certain nozzle tip designs discard or “zero out” the gate bubble by sealing at the cavity interface. This eliminates the gate bubble altogether so no tip insulator is necessary as the melt flows directly into the cavity.

The nozzle at the left shows an assembly where the gate bubble is consumed by a tip insulator (brown).  The nozzle at the right nullifies the gate bubble by participating as part of the cavity geometry.

The nozzle at the left shows an assembly where the gate bubble is consumed by a tip insulator (brown).  The nozzle at the right nullifies the gate bubble by participating as part of the cavity geometry.

How Hot Runner Manifold Design Influences Color Change

Another influence to color change with hot runners is the manifold design.  This applies to any hot runner, regardless of nozzle or gating style. Manifold melt volume and shot count is a necessity for any hot runner application, with some manifolds containing more melt than others.  That amount of material interferes with color change, as it must be replaced. The amount of molten material can be managed with melt channel diameter. To change color, this can be done faster if the amount of material to be replaced is minimized. However, a hot runner design must also consider the pressure requirement of the application. While volume (melt channel diameter) should be minimized, it should not be so far that the pressure limit of the machine’s injection unit is exceeded.

This graphic shows the frozen plastic from a melt channel, removed from a manifold.  The hot zone of the manifold (left) shows a thinner frozen layer than the cold zone (right).

This graphic shows solidified plastic removed from a manifold melt channel after a few cycles of black-to-white color change.  The hotter location (left) shows a thinner layer of old color than the colder location (right).

Thermal profile is another factor to consider when designing manifolds for color change. In addition to influencing injection pressure, a uniform thermal profile minimizes cold spots where the plastic boundary layer thickness at the melt channel wall can increase. The increased thickness at this cold location can cause difficulty when changing color, acting like a “dead spot” from the second concept.

Based on field experience and thorough analysis, Husky has developed robust manifold heater guidelines and applies them to all custom hot runner systems. By consistently applying these guidelines, thermal variation is minimized along the entire melt path.  Thermal profile is also optimized by adjusting heater wraps, number of heater zones, thermocouple placement, melt channel layout, heat sink position, and manifold shape. The combination of these variables is validated by using finite element analysis to ensure minimal thermal variation. All of Husky’s manifold designs are FEA validated for thermal profile.

How Hot Runner Manufacturing Influences Color Change

The hot runner’s manifold manufacturing is the final influence on color change. While the first two influences on color change cover application and component design, manifold manufacturing focuses on how the product is taken from the concept to the press. Thermal uniformity is an important consideration and one way to minimize variation is through automated heater installation. This ensures consistent performance from each zone and each manifold. In addition to resistance checks and power testing at final assembly, another way to validate manifold heaters is by using thermal imaging.

Manufacturing has a major impact on minimizing dead spots in the melt flow path. Husky examined the effectiveness of manifold manufacturing systems by measuring and comparing the color change timing of sample parts with various build conditions and resins. Husky tested manufacturing influences by building several manifolds with different levels of variation, running color change procedures, and comparing their performance. The results showed the best color change was achieved by applying our principles, gating, and minimizing manufacturing variation.

Investment in Color Change Sequencing Pays Dividends

Color change is dependent on many things, one of which is the color itself.  Each color typically requires different amounts of material to change from one to another.  While it is relatively fast to change from dark colors to light colors, the other way around usually requires more material.  It is important to develop an understanding of the part and colors required for each application, even running trials to understand the color change needs for each color across the product matrix. Production planning is one of the most effective ways to execute color change. This can be done by planning to run colors in a set sequence, typically gradual color change from dark to light and back to dark, leveraging schedule and equipment on the production floor. This element of color change performance seems obvious but is often overlooked. If production allow some flexibility, the order of color change can have a substantial impact on resin usage and downtime. For example, in one case study a molded closure not optimized for color change took 57.6 kg of material to complete a full color change cycle. By changing the run order of those same colors, color changeover was reduced from 600 to 400 shots and resin usage was reduced 33%.  If this information and flexibility is available, production scheduling can take advantage of both to maximize productivity.

Many parts are molded with the same mold, hot runner, and material - but different colors.  The top sequence above used a haphazard color plan.  The bottom sequence used an optimized color plan, with a color change downtime reduction of 33%.  Turnover between colors should be studied at validation to confirm when the best sequence to minimize operation costs.

Many parts are molded with the same mold, hot runner, and material - but different colors.  The top sequence above used a haphazard color plan.  The bottom sequence used an optimized color plan, with a color change downtime reduction of 33%.  Turnover between colors should be studied at validation to confirm when the best sequence to minimize operation costs.

Many parts are molded with the same mold, hot runner, and material - but different colors.  The top sequence above used a haphazard color plan.  The bottom sequence used an optimized color plan, with a color change downtime reduction of 33%.  Turnover between colors should be studied at validation to confirm when the best sequence to minimize operation costs.

Beyond the Hot Runner

Along with hot runner design considerations and scheduling, other technologies can be leveraged to decrease color change time. A system-based approach includes the injection molding machine and hot runner temperature controller working together to deliver more consistent and efficient color change when using purging compounds. By utilizing the Husky Altanium controller and its large touchscreen monitor, color change instructions can be integrated into the Altanium software and provide precise guidance at the user’s fingertips.  

Additional features such as soak timers and automatic temperature adjustments coupled with cycle count input from the molding machine and automated optimized procedures, can ensure correct steps are followed every time. This delivers consistent and optimized results no matter the machine or the experience level of the operator.

Altanium temperature controller features can be utilized to streamline color change processes.

Altanium temperature controller features can be utilized to streamline color change processes.

 

Case Studies

A pair of case studies illustrate how hot runner features can be optimized for improved color changeovers. On a 32-cavity polypropylene closure mold, changing from amber to natural color required up to nine thousand cycles in 28 hours until a part of acceptable color was produced. Husky implemented adjustments and changes which reduced the color changeover to 215 cycles in 40 minutes. This saved over 22,000 pounds of scrapped material and more than 650 hours of machine time.

In another case study, a two-shot eight-cavity mold undertook one of the most challenging color changes, going from black to white with two different grades of polypropylene. After modifications and changes, color change time was reduced from 1100 cycles to 240 - saving over five thousand pounds of material and 150 hours of machine time per year.

 

Conclusion

Color change optimization clearly delivers significant value in terms of productivity and profitability. As brand owners and OEMs continue to focus on consumer appeal and product differentiation, processors of injection molded parts will seek the best optimization strategies to improve color changeover times. Optimized hot runner systems stand ready to meet the challenge with improved designs, manufacturing methods, and new technologies that will keep color change a step ahead in injection molding.

主站蜘蛛池模板: 96精品国产|国产图区|亚洲最大=aV网站在线观看|精品一区二区三区影院|久久精品国产99国产|1024免费看 | 成全高清视频免费观看|亚欧在线观看视频|天天躁日日躁狠狠躁欧美老妇|性感一级片|日韩一区免费观看|欧美日韩在线免费观看 | 龙珠z国语版普通话免费播放|人妻阿敏被老外玩弄系列|久久露脸国语精品国产91|国产成人午夜精品影院观看视频|91视频一区二区|国产高清露脸孕妇系列 | tube国产麻豆|w两个世界完整免费观看超清完整|久久久亚洲精品动漫无码|久热久爱免费精品视频在线|国产嫩草在线视频|67149中文无码久久 | 午夜无码伦费影视在线观看|在线看成人片|免费在线观看黄色=av|#NAME?|日韩=a∨精品日韩在线观看|精品人妻无码一区二区色欲产成人 | 香蕉成人=av|九九视频这里有精品|美女黄频|99热播精品|日本亚洲欧美|免费=av高清 | 另类综合视频|成人网在线观看|亚洲=a级|制服丝袜成人动漫|国产亚洲欧洲一区二区三区|99久热re在线精品99re8热视频 | 成年免费观看黄页网站|亚洲毛片免费在线观看|欧美视频一区二区在线|欧美人精品XO|WWW夜片内射视频在观看视频|久久影院免费观看 | 免费极品=aV一视觉盛宴|大陆少妇xxxx做受|懂色一区二区二区=av免费观看|女人的超长巨茎人妖在线视频|欧美激情国产精品视频一区二区|精产国品久久一二三产区区别 | 国产乱妇乱子在线播视频播放网站|国产免费人成在线视频|精品欧洲=av无码一区二区14|精品少妇一区二区三区在线观看|播放一区二区|国产精品久久久久久久久无码日本蜜乳 | 在线看无码的免费网站|一本久道久久综合婷婷鲸鱼|九九爱在线视频观看免费视频|少妇久久久久久久久久|91视频免费网址|青青草自拍偷拍 | 毛片大全|日本色频|亚洲色图偷拍自拍|在线观看片=a免费观看岛国|在线中文字幕-区二区三区四区|日韩欧美色图 | 国产=a三级4三级|精品调教CHINESEG=aY|欧美一区二区三区不卡|欧美日韩国产黄色|久久99国内精品自在现线|10000部拍拍拍免费视频 | 无遮挡很爽很污很黄的女|免费看日韩片|#NAME?|中文字幕第一页在线视频|j=aponensisfes中国免费|国产gv网站在线视频 | 免费=a级网站|69=av片|久久看片|爱干=av在线|久久激情视频网|亚洲精品欧美精品 | 999精品视频一区二区三区|内射一区二区精品视频在线观看|成人无码区免费=a∨|狠狠操五月天|久久亚洲一区二区三区成人国产|日韩欧无码一区二区三区免费不卡 | 亚洲精品自拍偷拍视频|jk校花呻吟迎合娇躯白嫩|国产一级免费看视频欧美激情|国产精品香港三级国产=av|99热最新在线|亚洲国产色播=aV在线 | 69xxxx国产|一级一片|久久久久97|亚洲日本v=a午夜中文字幕|狠狠干伊人网|国产人妻精品区一区二区三区 | 亚洲国产一区在线观看|免费=a级伦费影视在线观看|日本在线不卡一区二区三区|91在线免费视频观看|俄罗斯=a级毛片|丁香五月开心婷婷综合中文 | 尤物午夜在线|97插插插|欧美成人一区二区三区在线视频|国产一级片精品|亚洲毛片亚洲毛片亚洲毛片|91免费视频观看 | 亚洲wwww|给个毛片网站|欧美日韩伦理在线|日本妈妈黄色片|日韩毛片在线观看|久久精品观看 | 欧美成人一二三|一区二区国产在线|欧美黑人激情性久久|欧美性大战久久久久久久蜜桃|亚洲色播爱爱爱爱爱爱爱|亚洲日本二区 | 亚洲国产精品无码第一区二区三区|十大免费最污的软件|玖玖99视频|激情动漫在线观看|#NAME?|蝌蚪视频窝在线播放 | 91在线在线观看|超碰97在线人人|精品粉嫩BBWBBZBBW|成人深夜小视频|午夜爱爱影院|日日干日日操日日射 | 免费在线观看黄色大片|综合一区无套内射中文字幕|你好星期六在线免费观看|91探花福利精品国产自产在线|成人18夜夜网深夜福利网|九九影院理论片在线观看一级 | 国精产品999一区二区三区有限|日韩毛片|成人免费看片又大又黄|麻豆出品视频在线|4438全国成人免费|青草视频精品 | 久久99香蕉|中国XXX农村性视频|亚洲=aV日韩=aV男人的天堂在线|国产v亚洲v天堂=a|亚洲|这里只有精品在线播放|三年片在线视频中国 | 国产=a三级4三级|精品调教CHINESEG=aY|欧美一区二区三区不卡|欧美日韩国产黄色|久久99国内精品自在现线|10000部拍拍拍免费视频 | 国产一级做=a爱片久久毛片=a|www.欧美视频|亚洲自国产拍揄拍|龙珠超二在线观看免费国语高清|羞羞答答=av成人免费看|99日精品视频 | 美女视频黄频大全视频网站|免费国产乱码一二三区|the=av免费观看网址|国产女同一区二区|亚洲无吗在线观看|国产综合精品 | www.亚洲日本|麻豆=av久久一区二区三区|成人国产视频在线观看|日韩精品久久一区|一本到在线观看视频|日本精品一区在线观看 | 91污视频软件|国产=av无码专区亚洲=av果冻传媒|免费又色又爽又黄的视频入口|亚洲精品乱码久久久久久蜜桃不卡|yes123夜色资源站最新地址|福利免费在线网站 | 日本成人在线视频网站|аⅴ资源中文在线天堂|国产精品白浆无码流出免费看|成熟女人牲交片免费观看视频|欧美牲交VIDEOSSEXES|日韩在线无 | 特级全黄久久久久久久久|伊人中文网|97资源站在线视频|久久天天躁狠狠躁夜夜躁2014|久久欧美精品一区|免费无码一级成年片在线观看 | きょこんきょうしゃ在线|91狠狠爱|亚洲=aV日韩综合一区尤物|丝袜亚洲另类欧美变态|GOGOGO高清在线观看|亚洲=aV成人无码精品综合网站 | 国产精品国产三级欧美二区|四虎影视在线免费观看|日日躁夜夜躁狠狠躁夜夜躁|日本高清中文字幕一区二区三区=a|日韩精品在在线一区二区中文|久久精品一区二区三区黑人印度 | 一本久久宗合久久伊人|国产精品嫩草研究院|欧美日韩一本|娇小萝被两个黑人用半米长|国产精彩视频一区二区|成年人在线免费看视频 | gogo大胆少妇大胆艺术又|日本高清视频www|无码精品一区二区三区潘金莲|91综合精品|亚洲中文精品久久久久久|#NAME? | 青草国产精品久久久久久|公和我做好爽添厨房中文字幕|99re6这里有精品热视频|六月婷婷精品视频在线观看|女教师办公室被强在线播放|日韩一区二区三区不卡视频 | 日韩=av无码精品一二三区|免费看成年视频|亚洲精品久久久蜜桃动漫|无码VR最新无码=aV专区|97久久久久人妻精品专区|一区精品在线观看 | 中文字幕在线中文乱|精品videossexfreeohdbbw|青青青国产在线视频在线观看|91国在线视频|性xxxx搡xxxxx搡欧美|婷婷中文 |