avav在线看_国产性色AV高清在线观看_狠狠干影院樱桃视频整合全网影视:_成人av中文字幕_欧美久久一级_91久久丝袜国产露脸动漫

November 26, 2021

Hot Runners Play a Key Role in Optimizing System Balance 

Balance has an important influence on the optimization of an injection molding process and can sometimes be a limiting factor in validation. It plays a major role for processors who seek to produce flash-free, fully packed parts with uniform dimensions using the largest possible processing window.  Balance is a numeric translation of variation inherent to a specific mold, typically measured by comparing the difference between the heaviest and lightest parts. One of the goals of balance measurement is to minimize that variation, over which hot runners can have a significant influence.

This article will examine the process fundamentals of system and hot runner balance, and its impact on mold qualification. We will look at the factors that facilitate the development of well-designed hot runners, plus the causes of system imbalance. We will also examine the factors that influence short shot balance beyond geometric melt channel balance as well as how to measure system balance and how to set expectations based on specific end-use applications.

Why Worry About Balance?                       

Cavity balance in injection molding is one of several benchmarks required by the mold qualification process. During the assessment of the molding process, the hot runner can assist in fine-tuning balancing. While there are many sources, such as websites and publications, dedicated to why balance is important, there is little or no information on what constitutes “acceptable” balance. Nor is there widely accepted information on the most effective procedure to measure balance.

For many industry observers, it is unclear what system balance confirms. Does it highlight variation from cavity to cavity, or how much volume is needed to fill the mold? There is a lack of clarity surrounding the definition of injection molding balance, because these determinations are interpreted by the user and subjective in nature.

To have the largest potential process window when injection molding with multicavity tools, all mold cavities should fill at the same time. Cavity-to-cavity and shot-to-shot variation makes it difficult to consistently mold parts with uniform dimensions.

Molded part inconsistencies can take form in a variety of defects. Part inconsistency is obviously not desirable, but what are some of the real consequences of variation? Inconsistency means increased qualification time if a required specification cannot be met. It can increase the cost of poor quality, which can appear as increased scrap rate, additional inspection or increased warranty spend. Part-to-part variation can also limit the process window to make acceptable parts, ultimately reducing flexibility and the robustness of the process.

These results are all “above the water line” and can be measured directly. There are also multiple “below the water line” costs of inconsistent parts. These can be higher risk, expediting, buffer inventory, lost sales, unpredictable profit and loss, diminished customer loyalty and higher administrative costs. By minimizing variation, processors can create a more capable molding system and a mold that can produce more and better parts within the given specification.

Addressing Hot Runner System Imbalance    

Short shot balance is affected by many peripherals:

  • Injection molding machine (tonnage, platen condition, screw design)
  • Resin (type, quality, preparation)
  • Processing (injection profile, cooling time, shot size)
  • Mold (type of mold, venting, cooling layout, stiffness, part geometry)

Hot runner systems also have several factors that influence short shot balance. Key hot runner considerations include melt channel layout, heater layout, plate bolting and plate cooling. Other influences include gating styles, actuation and temperature control.

By simply changing resins from PC/ABS to polypropylene, balance on a multicavity tool improved from 65% to 93%. No changes were made to the mold cavity or hot runner to get this improvement, illustrating that resin type can have a large impact on short shot balance. Some resins will have substantial changes in viscosity, with small changes in temperature or shear. The interaction of the resin with processing and tool conditions will be different depending on the properties of the resin. The impact on balance can be positive or negative depending on the resin and tool.

Though hot runners can provide significant benefits to the molder, they increase the complexity of the mold and can also contribute to fill imbalance. When more than one mold cavity is required for molding, the question of balance can become an issue. It is important that all the gates perform identically. This is especially true when molding high-tolerance or thin-wall components for demanding end-use markets, such as medical and healthcare. If the gates do not all behave in the same manner, the mold can become unbalanced. Short shot balancing focuses on the volume of plastic that is less than needed for a fully packed and dimensionally stable part.

Valve stem timing can also have a significant impact on short shot balance. In a 32-cavity syringe barrel mold, short shot balance improved from 60% to 90% by changing valve stem actuation from individual pneumatic pistons for each drop to synchronizing all valve stems with UltraSync® plate actuation.

Thermal Uniformity Creates More Balanced Filling    

The goal of a hot runner is to deliver melt to every cavity of a mold, and its thermal profile can also influence balance through optimized design. Ideally, there are identical heat conditions for the resin, regardless of the flow path. Several factors can influence temperature variation, including heater technology, drop layout, manufacturing practices and other design factors. There is an engineered balance between the manifold material, thermocouple placement, heat inputs that occur at heaters and heat losses that occur at the lead-bearing components.

Husky hot runners offer very high levels of thermal uniformity. Their features include:  

  • Optimized thermal design: Manifolds are designed using strict guidelines based on engineering principles. Thermal finite element analysis (FEA) is used to analyze every manifold design. Heat inputs, heat losses and thermal profile are optimized for each application.
  • Validated manufacturing equipment and in-process inspections: Manifold heater manufacture and installation equipment is automated, and process checks are implemented to verify accurate heater element position.
  • Thermal uniformity inspection: All finished hot runners and manifold systems are measured and heat tested at final assembly. Prior to shipment, the thermal profile is reviewed against guidelines for compliance, with thermal imaging used to audit and troubleshoot.

Thermal Uniformity Requires Control  

A thermally uniform hardware system is only as good as its controller, which relies on accurate temperature signals, optimized and controlled algorithms, and rapid reaction time. The first and most important consideration is the accuracy of the thermocouple signal being used to determine the temperature of the mold. A control algorithm is as effective as the accuracy of the data its calculations are based on. If the temperature measurement is disrupted by high-voltage leaking onto the thermocouple lines, then this will be interpreted as being the correct temperature, when in reality, it is not. The Husky Altanium® mold controller utilizes isolated thermocouple inputs that eliminate the effects of electrical noise and ensure that the temperature signal is true.

The second control component is the control algorithm. The algorithm contains the instructions for modulating the power output to adjust to variations in the process based on feedback from the thermocouples. In the case of the Altanium controller, this process is managed using Active Reasoning Technology (ART), which automatically optimizes the control of each heater to its specific operating environment.

The final control component is reaction time. This is important, because the longer it takes a command to be processed, the more out of tolerance the temperature will be once the calculation from the algorithm is executed. Using a distributed control architecture reduces the distance a signal must travel, which enables commands to be carried out in the shortest amount of time possible.

In a distributed architecture, the temperature control and power-switching circuitry are integrated into a single card. The temperature control algorithm is executed right on the board, allowing the fastest possible reaction time. The operator interface’s primary purpose is to send and monitor configuration parameters to the cards. The result is the most accurate and repeatable temperature control possible.

Gating Options Play a Major Role 

The gate is a restricting feature where plastic enters the cavity. Today, hot tip (thermal) gating and valve (mechanical) gating are the two options available for hot runner gating. Static plastic freezes at the gate during hold and creates a membrane or skin that breaks away from the part when the mold opens. The frozen slug left in the gate is blown out at the start of the next cycle. This sequence of this “plug blow” event between several gates can be somewhat random, which can show as imbalance, especially with very high cavitation molds. This is influenced by the slight variation between cavities and gates due to tolerance. Even the supplied resin itself is not truly homogenous, carrying a range of molecular weight.  Hot runner temperature setpoints can be adjusted to decrease these influences on balance.

The other gating option—valve gating—is a mechanical method of control, offering higher gate quality. It offers more shot-to-shot consistency compared with thermal gating, because the mechanical opening and closing of the gate eliminates inconsistencies related to thermal gating. Along with no gate vestige issues, the gate diameter is larger, resulting in less gate shear and reduced stress in the part.

As the flow front reaches the end of fill, the increasing cavity pressure helps equalize the flow balance differences between cavities. Some part features can also have the same effect on the balance and may not be at the end of fill. For example, the tamper band on a closure can “choke” or “meter” the flow through that area of the part. In this case, it would be best to perform troubleshooting procedures before those features take effect.

For Percentage-of-Fill, balance is evaluated at the transition point between velocity control and pressure control (V/P switchover). For a 48-cavity tool with a 5-gram part, a processor would evaluate balance at 90% or 95% of the total shot weight of 240 grams. The Percentage-of-Fill method serves as a tool to identify outliers (parts filled less than 90%) at the transition from velocity control to pressure control. Parts that are less than 90% full at the transition point could have molding defects.

The First-to-Fill method is more suited for troubleshooting, to investigate specific defects or problems with the molding system. Transition point (V/P switchover) is set so that the first part to fill is the desired percentage of the final part weight. All other parts will weigh less than this first part to fill. For example, the first part to fill is 95% of the final part weight.

Processors should manage their expectations when measuring the short shot balance of their injection molding process. The first step is to determine what procedure is right for the processor. Husky recommends the Percentage-of-Fill method (95%). The next step is to set a realistic expectation for the procedure, with the understanding that systems with valve gating typically deliver better balance than thermal gating systems. These are fair expectations that need to be tempered, since other factors can adversely influence variation and ultimately short shot balance.

If the mold under qualification exceeds these values, the process should continue. Investigate the results, and if the issue is not identified, document the results and continue with the qualification. If there is an issue (e.g., dimensional problem), a troubleshooting balance study should be completed to look for correlation.

In one example with a 144-cavity hot tip system, two contamination issues were resolved. Balance improved from 67% to 85%, and finally to 93%. In another example, the greatest influence on balance was the mold’s cooling water pressure.

It should be understood that short shot balance testing represents only a confirmation step, which attributes a variation measurement to the mold. It does not cast any negative judgement regarding the design, construction and function of the overall hot runner design.

Conclusion  

Short shot balance plays an important role in optimizing the injection molding process. One of the most important goals of balance measurement is to minimize variation between the cavities by measuring part weight. Short shot balance measurement is an important evaluation tool that can be used during mold qualification to troubleshoot specific issues. There are different procedures that can be used to check short shot balance, with varying results on the same system. It is important to pick the best procedure to fit the needs of the process and match the expectations to the procedure.

Several factors influence the short shot balance performance of a specific tool. Addressing the imbalances of a molding system requires a focused look at influences on variation. A reduction in process variation involves improvements in all aspects of the processing system. The hot runners can have a significant influence on short shot balance, and this is one of the most common considerations during mold qualification. Husky optimizes factors to minimize variation and improve consistency, including 100% geometrically balanced hot runner system designs, thermally uniform hot runners with precise temperature control and the elimination of gate open-close variation with Husky UltraSync technology.

主站蜘蛛池模板: 中文区中文字幕免费看|欧美亚洲网站|luluhei噜噜嘿在线视频|成人xxxxx|#NAME?|精品午夜熟女人妻视频毛片 | 欧美色欧美亚洲日韩在线播放|99久久久久99国产免费=aV|午夜免费片|日韩一区二区三区久久|婷婷色色狠狠爱|69=av在线观看 | 国产=a三级4三级|精品调教CHINESEG=aY|欧美一区二区三区不卡|欧美日韩国产黄色|久久99国内精品自在现线|10000部拍拍拍免费视频 | 亚洲免费永久|91看片网址|亚洲=aV片毛片成人观看|国产精品视频内|在线=a=a=a|国产美女主播一级成人毛片 | 91麻豆国产自产在线观看|曝光无码有码视频专区|丁香激情综合网|国产精品无码午夜免费影院|成年人二级毛片|中文字幕第4页 | 日韩精品三区|国产成人精品=a视频免费福利|色中色综合|国产成人精品一区二区三区四区|国产一级毛片精品完整视频版|国产字幕在线看 | 国产成人=aⅴ|日韩一区二区福利视频|日韩在线视频看看|国产剧情一区|色猫咪=aV在线网址|一级免费在线 | 高清中文字幕在线=a片|亚洲=aV日韩综合一区久热|品色堂永远的免费论坛|国产精品久久精品久久|国产视频中文字幕|亚洲精品国产综合 | 午夜无码伦费影视在线观看|在线看成人片|免费在线观看黄色=av|#NAME?|日韩=a∨精品日韩在线观看|精品人妻无码一区二区色欲产成人 | 99热久只有|九一免费视频|中日韩无砖码一线二线|日韩免费成人=av|国产在线中文字幕|国产=aV麻豆M=aG剧集 | 国产一区二区三区片|一区二区视频在线看|欧美=av在线|国产熟妇疯狂4P交在线播放|亚洲精品午夜无码专区|亚洲=aⅴ精品国产首次亮相 | 亚洲=av禁18成人毛片一级在线|九九在线视频免费观看|饥渴少妇高潮正在播放|欧美成人精品高清视频在线观看|伊人久久大香线蕉综合色狠狠|黄色片一级的 | 国产乱人乱精一区二区视频|97性无码区免费|色七七在线|亚洲=aV无码区在线观看东京热|免费看啪啪人=a片=a=a=a片|乱老熟女一区二区三区 | c=aopom成人免费公开视频|中文字幕欧美人妻精品一区|91九幺丨成人|日韩久久国产|三年片大全免费观看|久草在在线 | 亚洲女人天堂在线|四虎福利影院|日韩视频在线观看视频|欧美日韩成人一区|黑人异族巨大巨大巨粗|超碰在线c=ao | 亚洲啪啪|麻豆视传媒短视频免费官网|成人啪啪178|一区二区三区四区高清精品免费观看|日本一区二区三区免费看|久草视频免费播放 | 日韩=a网|超碰=av在线|国产综合久|三级视频在线|久久精品毛片免费观看|护士精品一区二区三区99 | 永久免费的啪啪网站免费观看浪潮|#NAME?|被按摩的人妻中文字幕|国产资源在线看|人人看人人射|免费看又黄又爽又猛的视频软件 | 国产成人18黄网站免费观看|日韩国产一区二|亚洲天堂自拍偷拍|性做爰片免费视频毛片中文|天天精品视频免费|黄色毛片免费 | 各处沟厕大尺度偷拍女厕嘘嘘|亚洲一区二区不卡视频|亚洲淫片|又黄又爽又色成人网站|999这里只有精品|免费国产乱理伦片在线观看 | 国产婷婷综合在线视频中文|人人超人人超碰超国产97超碰|一区二区动漫|中国农村毛片免费播放|久久综合久久久久88|男女猛烈啪啪无遮挡免费观看 | 欧美亚洲成人在线|国产精品拍天天在线|超碰人人91|天下第一社区高清在线播放|欧美黄色成人影院|欧美成人影院在线 | h七七www色午夜日本|九九热视频精品在线观看|麻豆91地址|美女裸体无遮挡黄污网站|亚洲欧美久久精品|在线观看区 | 成人免费=av在线播放|国产CHINESEHDXXXX宾馆TUBE|夜夜夜夜夜夜爽噜噜噜噜噜噜|午夜理论在线观看无码|亚洲人ⅴs=aⅴ国产精品|91免费影视 | 美女人妻激情乱人伦|亚洲=aV激情无码专区在线播放|国产在线区|国产v=a免费精品高清在线|天天干天天射综合|九九九九精品 | 玖玖久久|亚洲一级在线|久久久精品视频在线|亚洲精品伊人|欧美入口|不卡亚洲精品 | 欧美人成免费网站|图片区小说区激情区偷拍区|一级毛片免费大片|香蕉大人久久国产成人=av|亚洲欧美日本久久综合网站|亚洲精品成人=a8198=a | 69xxxx国产|一级一片|久久久久97|亚洲日本v=a午夜中文字幕|狠狠干伊人网|国产人妻精品区一区二区三区 | 国精产品999一区二区三区有限|日韩毛片|成人免费看片又大又黄|麻豆出品视频在线|4438全国成人免费|青草视频精品 | 国产成人=aⅴ|日韩一区二区福利视频|日韩在线视频看看|国产剧情一区|色猫咪=aV在线网址|一级免费在线 | 国语精品对白露脸少妇网站|快好爽射给我视频|国产熟妇另类久久久久久|在线看免费视频|www久久九|亚洲综合欧美另类 | 日韩=av在线中文|三年片在线观看大全中国|日韩视频在线观看中文字幕|91在线看免费|免费人成在线观看视频无码|一个人看的视频www在线观看 | hh99me福利毛片|18国产精品白浆在线观看免费|无码午夜人妻一区二区三区不卡视频|免费看无码自慰一区二区|亚洲一区二区卡|天天操天天艹 | 日本少妇浓毛BBWBBWBBW|久久久久久成人网|亚洲中文有码字幕日本|老妇出水bbw高潮|色偷偷88888欧美精品久久久|日韩午夜精品 | 狠狠色成人一区二区三区|国语对白二区|性猛交xxxx|jαpαnesehd熟女熟妇伦|午夜影院免费版|国产精品自在线拍国产手青青机版 | 澳门成免费crm大全|日韩在线精品成人=aV|精品国产一区二区三区成人影院|日韩=av中文无码影院|久久最新金品视频免费播放|国产精品1卡2卡3卡4卡 | 国产精品一区2区3区|91蝌蚪在线播放|一级国产20岁美女毛片|国产伦精品一区二区三区视频不卡|少妇内射兰兰久久|日本成人=a | 国产香蕉在线观看|亚洲=aV无码乱码国产精品久久|最新中文字幕=av无码专区不卡|日韩午夜大片|精品视频久久久久久|性少妇MDMS丰满HDFILM | 12一14幻女bbwxxxx在线播放|自拍偷拍第5页|成人小视频免费看|在线看黄色片|亚洲精品国产品国语在线观看|欧美中文字幕在线视频 | 大内密探零零性在线|中文字幕无码免费久久|xxxxx中国少妇|男男调教小太正裸体|虎白女粉嫩尤物福利视频|成人一级免费 | 啊灬啊灬啊灬快高潮视频|国语自产少妇精品视频蜜桃|欧美专区一区|人人草人人爱|一级毛片在线观|欧美国产日韩另类视频区 |