avav在线看_国产性色AV高清在线观看_狠狠干影院樱桃视频整合全网影视:_成人av中文字幕_欧美久久一级_91久久丝袜国产露脸动漫

August 23, 2023

Caps and Closures Production: Selecting Between Injection and Compression Molding

In the dynamic, fast-changing world of beverage package design, selecting the right manufacturing method is crucial for creating high-quality caps and closures. Injection molding and Compression molding are two popular techniques for producing plastic caps and closures, and in this article, we will take a closer look at both methods, enabling you to make informed decisions to meet your specific requirements.

Let’s take a closer look at injection molding versus compression molding.

WHAT IS INJECTION MOLDING?

Injection molding is a versatile and efficient manufacturing process that involves injecting molten materials (resin) into a mold. The molten material is injected under high pressure into a closed mold cavity, where it cools and solidifies, taking the desired shape of the plastic part. 

Injection molding enables the production of large volumes of identical parts with complex shapes and precise details. For this reason, injection molding has become a popular choice to produce caps and closures due to its remarkable flexibility, efficiency, and ability to consistently produce high-quality components. The beverage packaging industry, in particular, is making use of this manufacturing process to address sustainability trends and regulations, increase design flexibility, and streamline production and costs. 

With injection molding, each process parameter is independently adjustable, allowing for a larger process window. This larger process window enables better adaptability to different raw materials and color masterbatches.

Advantages of Injection Molding 

Complex Part Design Capabilities
Injection molding provides a higher degree of design freedom, enabling to create parts with undercuts, hinges, and advanced geometries used to enhance the consumer experience. This is particularly relevant with tethered caps.
Indeed, the complex geometry enables tethered caps with 180-degree openings on all necks and produces a pronounced clicking sound when users reach the end position, serving as a tactile cue.

No Post-Processing Requirements and Constant Bridge Quality
Injection molding also enables the ability to mold the tamper evident band with molded-in bridges eliminating the need for post-mold slitting and/or folding. As such, it reduces the required machinery and labor as well as the risks for quality concerns.
Molded-in bridges guarantee that the geometry of the bridges remains constant, with identical bridge size and position, cycle after cycle over the entire mold lifetime as there is no risk of wearing on the involved mold components. These conditions combined guarantee that the geometry of the bridges remains constant over time, guaranteeing part quality and consumer experience.

No Micro-Plastic Contamination
As there is no need for slitting with Molded-in bridge injected closures, there is also no generation of plastic dust linked to this step. This is a significant advantage for brands that are concerned with the potential contamination of microplastics that could end up in the beverage, food or medicine.

Lightweighting
Injection molding enables the production of lightweight parts without compromising quality or functionality. The process enables the optimization of wall thickness, resulting in lighter components that meet performance requirements. The elimination of the folded part of the closure reduces the part weight. Although it is true that best-in-class closures from both technologies are often at par in terms of weight, it is not uncommon to see injection molded closures be slightly lighter than compression molding.

Reduced Maintenance and Downtime
Once properly set up, an injection molding line can operate with minimal maintenance and downtime. Injection molding involves fewer components and tools in motion, which move at a considerably slower speed, leading to decreased maintenance needs overall resulting in less downtime.

Flexible Production
Injection molding is particularly interesting for converters that need to change closure types frequently: different neck finishes or from non-tethered to tethered. Changing the closure type is done by swapping the mold installed in the machine, which can be done within hours. The change from non-tethered to tethered requires the exchange of sliders only, which can be done without removing the mold from the machine within 1 hour.

Consistency and Process Robustness
Injection molding offers exceptional process control, resulting in consistent and repeatable part quality. The ability to closely monitor and adjust process parameters ensures that each part produced meets the desired specifications. Once the injection process is established, the process robustness allows for reliable and consistent production runs.

HyCAP™4 is the industry’s only fully integrated beverage closure injection molding system designed and built to work together for increased productivity, energy efficiency and ease of use.

WHAT IS COMPRESSION MOLDING?

Compression molding is a manufacturing process that involves the use of pressure to form preheated material into a desired shape. Unlike, injection molding where a multi-cavity mold produces many parts during each injection cycle, in compression molding the machine is composed of a carousel equipped with many single-cavity molds that produce one closure each. Compression molding involves placing a preheated molding material, known as a charge, into an open mold cavity. The mold is then closed, and pressure is applied to compress the material into the desired shape. The part is cooled until the mold is opened and the part is extracted from the mold. 

Advantages of Compression Molding

No Gate Mark
Compression molding does not require gates for material flow. This results in compression-molded parts having surface finish without visible gate marks.

Fast Color Changes
The extruder in a compression molding system feeds each mold directly without the need of a hot runner. Injection molding systems use a hot runner to distribute the molten resin from the injection unit to the mold cavities. The absence of the hot runner allows for faster color changes in compression molding.

Lower Energy Consumption
Compression molding works with lower resin temperatures, requiring less energy to warm up the material and to cool it down in the mold.

Lower Initial Equipment Investment 
The initial investment costs for compression molding are lower compared to injection molding. This may benefit converters new to the closures business, but one should always consider the full cost of ownership.

Injection Molding vs Compression Molding 

When comparing injection molding versus compression molding, it’s important to understand that the needs of your specific application should be the driving force behind your choice, as both processes have their benefits.

Let’s take a closer look at injection molding versus compression molding for caps and closures production.

Which process is more costly?
Compression molding typically has lower initial equipment cost than injection molding. However, resin costs are making up for more than 80% of the part cost. Energy and maintenance costs are the next biggest contributors.
When closure weights are equivalent, the closure cost has been found to be approximately 5% lower for compression molding in most cases. Resin cost is the primary cost driver, so a slight weight benefit to injection molding can offset the cost difference.

In cases where injection molding is marginally more expensive, the value of an improved consumer experience, through features like tethered closures with a 180-degree opening angle and audible and tactile cues, may well justify the increase in cost.

Although difficult to quantify, anyone considering investing in one of these technologies should also consider the cost linked to licensing fees, post-processing steps like slitting and folding when tethered closures are involved (i.e., the need for a system to orient the closure before slitting, increased cost of knives, advanced inspection systems, etc.).

Which process provides more flexibility?
One of the biggest advantages of injection molding is that it provides much more design flexibility and versatility. As mentioned above, injection molding may be preferred when undercuts or complex geometries are required. Design features like 180-degree opening and audible clicks, which have received positive feedback from major beverage brands have only been achieved with injection molding technology. The design freedom, and thus consumer experience that injection molding provides cannot be matched with compression molding.

Injection molding also provides flexibility in the production environment. Converters can use the same machine to produce a large variety of closures simply by exchanging the mold. This can be done within a few hours. The injection machine itself can be used to inject parts other than closures, resulting in a higher salvage value for the system.

In contrast, compression molding is better suited for simpler designs and in situations where the equipment is dedicated to one closure only and is loaded the entire year.

Which process is more efficient?
Injection molding offers streamlined, efficient and robust processes that contribute to enhanced production and overall efficiency. Planned maintenance is less demanding in injection molding compared to compression molding, given that there are less parts moving, and these parts are also moving more slowly.

Unlike compression molding, injection molding eliminates the need for additional post-production steps like slitting and folding and significantly minimizes the risk of scrap and dust,

In compression molding, tethered caps & closures need to be oriented prior to slitting and require a more complex slitting knife and process. To guarantee the quality of the slitting, the inspection process is also more complex.

Closures produced through injection molding, in contrast, are completely finished as they are released from the mold. All geometries are molded within the mold with high levels of repeatability.

While injection molding enables a molded-in-bridge, compression molding requires post-processing steps like slitting.

Which process enhances consumer safety?

The higher degree of design freedom provided by injection molded bands also translates into increased safety for end consumers, especially when tethered caps and closure designs are taken into account. Although tethered caps and closures are designed to remain attached to the bottle, they can be intentionally removed by consumers. The limited design options of slitting in compression molding, meanwhile, produce sharp edges and sturdy, spiky elements when the cap is separated from the band, as shown below. These factors have the potential to pose hazards for lip and finger injuries. Injection molded tethered caps and closures, on the other hand, have softer geometries that produce very thin and flexible arms, which are unlikely to cause injury.

How to Choose Between Injection Molding and Compression Molding 

When comparing injection molding and compression molding, it’s clear that while compression molding offers advantages such as fast color changes and lower energy consumption, injection molding is a more versatile and efficient process overall. Injection molding provides design freedom and production flexibility to meet the needs of most beverage brands and converters.

However, to determine the best manufacturing method for your projects and applications, it’s important to evaluate their specific requirements and constraints. We encourage you to reach out to our subject matter experts, who can provide additional information and insights to enable you to make an informed decision.

 

 

Sources:

  1. RapidDirect. (2021). Compression molding vs injection molding: Which process is better?
  2. PETplanet PETinar. (2020). Tethered caps: An opportunity for compression and injection-molding?
  3. PR Newswire - Verified Market Research. (2019). Caps and Closures Market is Expected to Generate a Revenue of USD 93.25 Billion by 2030, Globally, at 4.78% CAGR
  4. Silgan Closures. (2018). Plastic Closures: Injection vs Compression - What Will You Choose?
  5. Plastics Today. (2010).  Closure molding clash: Compression vs. injection
主站蜘蛛池模板: 国产人成精品香港三级在线|国产乱人伦偷精品视频免观看|男女无套免费视频软件|中文无码一区二区不卡αv|91短视频免费|亚洲美女精品区人人人人 | 91视频网国产|粗大猛烈进出高潮视频|精品国产乱码久久久人妻|亚洲精品无码久久毛片波多野吉衣|成人久久免费视频|国产美女自拍 | 国精产品W灬源码1688伊在线|在线观看肉片=aV网站免费|黄色生活毛片|免费看=av网页|亚洲色欧美国产综合|国产青青操 | 久久精品九九热无码免贵|日本=aⅴ精品一区二区三区|亚洲国产精品一区二区成人片|国产精品91久久|久草=av在线播放|亚洲在线www | 欧美久久深夜=a=a=a片|天堂黄网|性中国hd|成人免费网站入口www|国产一区激情|#NAME? | 综合亚洲网|亚洲综合成人亚洲|日本精品一区二区三区在线观看|粗大猛烈进出呻吟声的视频|绝世武魂短剧免费观看|黄色一级免费大片 | 亚洲乱小说|未满十八18禁止免费无码网站|日韩=av免费网址|在线国v免费看|人成午夜大片免费视频77777|亚洲激情影院 | 色一色成人网|久草在线影|精品视频在线观看99|国产香蕉尹人视频在线|亚洲=a∨好看=av高清在线观看|亚洲欧美日本在线 | 在线看免费观看=av|十九岁大学生日本在线播放|91在线看视频|欧美日韩国产综合新一区|韩日黄色毛片|刘亦菲精品国产亚洲人成 | 未满成年国产在线观看|99爱精品|#NAME?|免费成人=av网|麻豆911|精品国产综合区久久久久久 | 国产这里只有|斗罗之斗淫大陆h污文小舞白丝|真人做爰高潮全过程免费视看|久久丁香|777色情在线无码|91九色视频在线播放 | WWW免费视频在线观看播放|欧美日本一道本一区二区|999在线精品视频|国产十日韩十欧美|天堂网中文字幕在线观看|日韩一二三四 | 国产最新在线观看|久久黄页|在线不卡日本v二区707|成人免费一区二区三区在线观看|欧美又粗又大色情hd堕落街传奇|免费观看全黄做爰的视频 | 日韩性生活一级|日韩久久无码一区二区|欧美胖老太一级毛片|欧美精品一区二区精品久久|国产精品日韩在线观看|亚洲=av线=av无码=av岛国片 | 二区视频在线|久久99精品久久久野外观看|国产欧美日韩一区二区三区在线观看|久久国产色=av免费看|樱花草在线播放免费中文|亚洲最新版=aV无码中文字幕 | 97久久久久人妻精品区一|高潮视频免费|欧美一级大胆视频|超碰在线97免费|国产福利合集|7777精品伊久久久大香线蕉语言 | 吃奶大尺度无遮挡激情做爰|成人公开免费视频|日本娇小枯瘦xxxx|超碰95在线|精品伦理一区二区三区|久久国产精品区 | 极品少妇x88|国产免费看福利|亚洲欧美国产另类首页|69xx免费播放|亚洲=aV无码天堂一区二区三区|国产真实乱在线更新 | 在线观看免费黄网|久久久久久久久久久鸭|91社影院|日本一区免费网站|尹人香蕉久久99天天拍|任我爽橹在线精品视频 | 日韩国产精品久久|黄=a在线|日韩视频久久|欧美亚洲日韩国产人成在线播放|超碰成人在线免费观看|欧美大屁股BBBBXXXX | 久久这里只有精品青草|成人97|91国偷自产一区二区三区女王|精品日韩|日韩精品国产另类专区|777久久久精品 | #NAME?|中文视频一区|亚洲第一=av男人的天堂|精品成人=av|日韩高清dvd碟片|日韩精品资源在线观看 | 国产乱码一区二区三区|久久婷婷麻豆国产91天堂|无毛一区二区|日韩久久综合|午夜影院福利社|日韩字幕一区 | 亚洲视频精品在线|国产免费=av资源|在线区一区二视频|成人中文在线|激情综合亚洲|秦岭神树动漫版免费看 | 99中文视频|成人手机在线免费观看|久久成人精品|日韩72页|秋霞麻豆|999视频网站 | 小柔在教室轮流澡到高潮视频|大乳boobs巨大吃奶乳水|蜜桃=av鲁一鲁一鲁一鲁|亚洲少妇综合网|国产亚洲精品码|免费看国产精品视频 | 国产=av熟女一区二三区灾密臀|黄色片在线播放|欧美人与牲口杂交视频在线|偷偷操任你操|69式视频免费观看|久久综合狠狠色综合伊人 | 国产欧美日本=aⅤ精品|婷婷久久=av|免费观看的=av|国产精品一区二区x88=av|日本视频www|99热黄 | 亚洲欧美专区|69自拍视频|成人小视频在线观看|日本三级高清|亚洲=aV无码日韩=aV无码导航|日本xxxxwwwwww | 久久久久高潮毛片免费全部播放|精品国产一区二区三区久久狼黑人|7878视频在线观看|国产日韩精品视频一区二区三区|#NAME?|91p九色成人 | 婷婷五月综合国产激情|亚洲自拍一区在线观看|日本做暖暖视频高清观看|国产高清一区二区三区综合四季|蜜桃=av影院|天美传媒一区二区 | www欧美精品|成全在线观看免费高清动漫|富婆推油偷高潮叫嗷嗷叫|久久做受WWW|韩国羞羞|日韩亚洲欧美中文三级 | 国产精品成人**免费视频|亚洲免费在线播放视频|国产激情一级毛片久久久|99久免费精品视频在线观78|97dyy97影院理论片在线|日韩成人免费视频 | 成人无码区免费=aⅴ片www老师|男人天堂网址|国产一片|国产第一福利影院|一本久道中文无码字幕=av|毛片视频播放 | 国产草草影院|欧美性生交大片免费看|67194熟妇在线观看永远免费|偷偷碰偷偷鲁免费视频|欧美性生交xxxx乱大交3|激情麻豆视频 | 国产一区二区三区怡红院|91自拍.com|国91精品久久久久9999不卡|久久精品国产精品亚洲艾草网|九色精品|亚洲一区二区综合 | 亚洲国产精品热久久|亚洲免费大全|欧美成人ccc大片|国产精品二三区|国产V片在线播放免费无码|亚洲精品久久国产高清 | 性开放少妇xxxxⅹ视频蜜桃|成人深夜福利视频在线观看|依人久久久|葵司在线视频|不卡视频在线|免费看黄色大片 | 1000部禁又爽又黄的禁片免费|一区二区三区在线免费视频|国产精国产精品|中文字幕人妻系列人妻有码|在线日韩免费|男女wwww | 麻豆精品蜜桃|黄网wwwccc|色自拍偷拍|久久亚洲精品无码网站|国产成人免费视频在线网站2|久久久老熟女一区二区三区91 | 久久精品亚洲酒店|黄国产区|在线视频中文字幕|91精品欧美|三区中文字幕|日韩亚洲精品在线 |