avav在线看_国产性色AV高清在线观看_狠狠干影院樱桃视频整合全网影视:_成人av中文字幕_欧美久久一级_91久久丝袜国产露脸动漫

August 23, 2023

Caps and Closures Production: Selecting Between Injection and Compression Molding

In the dynamic, fast-changing world of beverage package design, selecting the right manufacturing method is crucial for creating high-quality caps and closures. Injection molding and Compression molding are two popular techniques for producing plastic caps and closures, and in this article, we will take a closer look at both methods, enabling you to make informed decisions to meet your specific requirements.

Let’s take a closer look at injection molding versus compression molding.

WHAT IS INJECTION MOLDING?

Injection molding is a versatile and efficient manufacturing process that involves injecting molten materials (resin) into a mold. The molten material is injected under high pressure into a closed mold cavity, where it cools and solidifies, taking the desired shape of the plastic part. 

Injection molding enables the production of large volumes of identical parts with complex shapes and precise details. For this reason, injection molding has become a popular choice to produce caps and closures due to its remarkable flexibility, efficiency, and ability to consistently produce high-quality components. The beverage packaging industry, in particular, is making use of this manufacturing process to address sustainability trends and regulations, increase design flexibility, and streamline production and costs. 

With injection molding, each process parameter is independently adjustable, allowing for a larger process window. This larger process window enables better adaptability to different raw materials and color masterbatches.

Advantages of Injection Molding 

Complex Part Design Capabilities
Injection molding provides a higher degree of design freedom, enabling to create parts with undercuts, hinges, and advanced geometries used to enhance the consumer experience. This is particularly relevant with tethered caps.
Indeed, the complex geometry enables tethered caps with 180-degree openings on all necks and produces a pronounced clicking sound when users reach the end position, serving as a tactile cue.

No Post-Processing Requirements and Constant Bridge Quality
Injection molding also enables the ability to mold the tamper evident band with molded-in bridges eliminating the need for post-mold slitting and/or folding. As such, it reduces the required machinery and labor as well as the risks for quality concerns.
Molded-in bridges guarantee that the geometry of the bridges remains constant, with identical bridge size and position, cycle after cycle over the entire mold lifetime as there is no risk of wearing on the involved mold components. These conditions combined guarantee that the geometry of the bridges remains constant over time, guaranteeing part quality and consumer experience.

No Micro-Plastic Contamination
As there is no need for slitting with Molded-in bridge injected closures, there is also no generation of plastic dust linked to this step. This is a significant advantage for brands that are concerned with the potential contamination of microplastics that could end up in the beverage, food or medicine.

Lightweighting
Injection molding enables the production of lightweight parts without compromising quality or functionality. The process enables the optimization of wall thickness, resulting in lighter components that meet performance requirements. The elimination of the folded part of the closure reduces the part weight. Although it is true that best-in-class closures from both technologies are often at par in terms of weight, it is not uncommon to see injection molded closures be slightly lighter than compression molding.

Reduced Maintenance and Downtime
Once properly set up, an injection molding line can operate with minimal maintenance and downtime. Injection molding involves fewer components and tools in motion, which move at a considerably slower speed, leading to decreased maintenance needs overall resulting in less downtime.

Flexible Production
Injection molding is particularly interesting for converters that need to change closure types frequently: different neck finishes or from non-tethered to tethered. Changing the closure type is done by swapping the mold installed in the machine, which can be done within hours. The change from non-tethered to tethered requires the exchange of sliders only, which can be done without removing the mold from the machine within 1 hour.

Consistency and Process Robustness
Injection molding offers exceptional process control, resulting in consistent and repeatable part quality. The ability to closely monitor and adjust process parameters ensures that each part produced meets the desired specifications. Once the injection process is established, the process robustness allows for reliable and consistent production runs.

HyCAP™4 is the industry’s only fully integrated beverage closure injection molding system designed and built to work together for increased productivity, energy efficiency and ease of use.

WHAT IS COMPRESSION MOLDING?

Compression molding is a manufacturing process that involves the use of pressure to form preheated material into a desired shape. Unlike, injection molding where a multi-cavity mold produces many parts during each injection cycle, in compression molding the machine is composed of a carousel equipped with many single-cavity molds that produce one closure each. Compression molding involves placing a preheated molding material, known as a charge, into an open mold cavity. The mold is then closed, and pressure is applied to compress the material into the desired shape. The part is cooled until the mold is opened and the part is extracted from the mold. 

Advantages of Compression Molding

No Gate Mark
Compression molding does not require gates for material flow. This results in compression-molded parts having surface finish without visible gate marks.

Fast Color Changes
The extruder in a compression molding system feeds each mold directly without the need of a hot runner. Injection molding systems use a hot runner to distribute the molten resin from the injection unit to the mold cavities. The absence of the hot runner allows for faster color changes in compression molding.

Lower Energy Consumption
Compression molding works with lower resin temperatures, requiring less energy to warm up the material and to cool it down in the mold.

Lower Initial Equipment Investment 
The initial investment costs for compression molding are lower compared to injection molding. This may benefit converters new to the closures business, but one should always consider the full cost of ownership.

Injection Molding vs Compression Molding 

When comparing injection molding versus compression molding, it’s important to understand that the needs of your specific application should be the driving force behind your choice, as both processes have their benefits.

Let’s take a closer look at injection molding versus compression molding for caps and closures production.

Which process is more costly?
Compression molding typically has lower initial equipment cost than injection molding. However, resin costs are making up for more than 80% of the part cost. Energy and maintenance costs are the next biggest contributors.
When closure weights are equivalent, the closure cost has been found to be approximately 5% lower for compression molding in most cases. Resin cost is the primary cost driver, so a slight weight benefit to injection molding can offset the cost difference.

In cases where injection molding is marginally more expensive, the value of an improved consumer experience, through features like tethered closures with a 180-degree opening angle and audible and tactile cues, may well justify the increase in cost.

Although difficult to quantify, anyone considering investing in one of these technologies should also consider the cost linked to licensing fees, post-processing steps like slitting and folding when tethered closures are involved (i.e., the need for a system to orient the closure before slitting, increased cost of knives, advanced inspection systems, etc.).

Which process provides more flexibility?
One of the biggest advantages of injection molding is that it provides much more design flexibility and versatility. As mentioned above, injection molding may be preferred when undercuts or complex geometries are required. Design features like 180-degree opening and audible clicks, which have received positive feedback from major beverage brands have only been achieved with injection molding technology. The design freedom, and thus consumer experience that injection molding provides cannot be matched with compression molding.

Injection molding also provides flexibility in the production environment. Converters can use the same machine to produce a large variety of closures simply by exchanging the mold. This can be done within a few hours. The injection machine itself can be used to inject parts other than closures, resulting in a higher salvage value for the system.

In contrast, compression molding is better suited for simpler designs and in situations where the equipment is dedicated to one closure only and is loaded the entire year.

Which process is more efficient?
Injection molding offers streamlined, efficient and robust processes that contribute to enhanced production and overall efficiency. Planned maintenance is less demanding in injection molding compared to compression molding, given that there are less parts moving, and these parts are also moving more slowly.

Unlike compression molding, injection molding eliminates the need for additional post-production steps like slitting and folding and significantly minimizes the risk of scrap and dust,

In compression molding, tethered caps & closures need to be oriented prior to slitting and require a more complex slitting knife and process. To guarantee the quality of the slitting, the inspection process is also more complex.

Closures produced through injection molding, in contrast, are completely finished as they are released from the mold. All geometries are molded within the mold with high levels of repeatability.

While injection molding enables a molded-in-bridge, compression molding requires post-processing steps like slitting.

Which process enhances consumer safety?

The higher degree of design freedom provided by injection molded bands also translates into increased safety for end consumers, especially when tethered caps and closure designs are taken into account. Although tethered caps and closures are designed to remain attached to the bottle, they can be intentionally removed by consumers. The limited design options of slitting in compression molding, meanwhile, produce sharp edges and sturdy, spiky elements when the cap is separated from the band, as shown below. These factors have the potential to pose hazards for lip and finger injuries. Injection molded tethered caps and closures, on the other hand, have softer geometries that produce very thin and flexible arms, which are unlikely to cause injury.

How to Choose Between Injection Molding and Compression Molding 

When comparing injection molding and compression molding, it’s clear that while compression molding offers advantages such as fast color changes and lower energy consumption, injection molding is a more versatile and efficient process overall. Injection molding provides design freedom and production flexibility to meet the needs of most beverage brands and converters.

However, to determine the best manufacturing method for your projects and applications, it’s important to evaluate their specific requirements and constraints. We encourage you to reach out to our subject matter experts, who can provide additional information and insights to enable you to make an informed decision.

 

 

Sources:

  1. RapidDirect. (2021). Compression molding vs injection molding: Which process is better?
  2. PETplanet PETinar. (2020). Tethered caps: An opportunity for compression and injection-molding?
  3. PR Newswire - Verified Market Research. (2019). Caps and Closures Market is Expected to Generate a Revenue of USD 93.25 Billion by 2030, Globally, at 4.78% CAGR
  4. Silgan Closures. (2018). Plastic Closures: Injection vs Compression - What Will You Choose?
  5. Plastics Today. (2010).  Closure molding clash: Compression vs. injection
主站蜘蛛池模板: 激情欧美一区二区三区免费看|亚洲青青草|国产精品免费久久久久影视|日本亚洲欧洲免费无码|国产精品XXX大片免费观看|国产一级片网 | 阿v天堂2018在无码免费|男人添女人下身视频网站|日韩精品久久久久久免费|日韩爱爱免费视频|视频在线精品一区|成人欧美一区二区三区视频xxx | 日本免费网站黄|免费精品视频一区二区三区|69p=ao国产成人免费|#NAME?|欧美特一级|激情五月激情综合 | 国产色婷婷精品免费视频|#NAME?|亚洲综合欧美|综合亚洲精品|黑猫=aV第一福利网站|日韩欧美中文字幕一区二区三区 | 日本中文一区二区|成年女人高潮免费播放|xx69视频|午夜h片|久久99热这里只有精品国产|亚洲一区二区视频 | 一区二区三区视频免费看|久久爱伊人|日本大尺度吃奶做爰久久久绯色|日韩精品视频免费在线观看|亚洲系列一区中文字幕|天堂视频一区二区 | 日本免费中文字幕|狠狠操综合网|国产一区二区=av在线|国产91精清纯白嫩高中在线观看|少妇特黄V一区二区三区|免费看荫蒂添的好舒服视频 | 啊啊啊好爽啊|日韩性活大片|亚洲=aV日韩=aV综合在线观看|野花社区WWW在线高清观看|亚洲最黄视频|最新黄色=av | 天天射夜夜骑|日韩视频黄色|亚洲国产精品一区二区成人片国内|#NAME?|一二三区在线免费观看|国产九九在线视频 | 亚洲国产福利一区|免费无码午夜福利片69|99亚洲伊人久久精品影院红桃|日韩在线观看你懂的|在线观看99|91午夜国产 | 久久精品亚洲酒店|黄国产区|在线视频中文字幕|91精品欧美|三区中文字幕|日韩亚洲精品在线 | 久久人人精品|亚洲综合欧美在线一区在线播放|高清欧美性猛交XXXX黑人猛交|国产欧美一区二区三区久久|黄色毛片=a|欧洲内射XXX高清 | 欧美xxxxx做受vr|2018毛片|久久久人人人婷婷色东京热|黄色=a视频在线观看|在线免费看=av|91无吗 | 国产一二区在线观看|黄在线免费|欧美大片www|无码h片在线观看网站|亚洲图区综合网|伊人久久亚洲 成人一区二区三区免费视频|日本=a=a=a=a片毛片免费观蜜桃|在线观看亚洲欧美|日本一夲道无码不卡免费视频|穿乳环蒂环上锁调教老师|国产成人综合一区二区三区 | 久久久国产精品V=a麻豆|XUNLEIGE无码新入口|免费看少妇作爱视频|97久久超碰国产精品旧版|国产成人综合久久免费导航|精品国产成人=aV在线 | 图片小说视频一区二区|国产我不卡|亚洲综合久久成人=a片|爱操视频|亚洲国产综合精品一区|欧美=aⅴ | 各处沟厕大尺度偷拍女厕嘘嘘|亚洲一区二区不卡视频|亚洲淫片|又黄又爽又色成人网站|999这里只有精品|免费国产乱理伦片在线观看 | 91porn在线视频|尤物视频网站在线|日韩色性|三级黄色=a级片|看免费黄色一级片|男女性杂交内射女BBWXZ | 国产一区黄|午夜福利国产成人无码GIF动图|骚色综合|国产婬乱=a一级毛片多女|99久久九九国产精品国产免费|久久久久成人精品免费播放动漫 | 婷婷综合缴情亚洲狠狠|日日夜夜操视频|三级在线中文字幕|日本精品免费在线观看|日产国产亚洲精品系列|国产高欧美性情一线在线 | 啊灬啊灬啊灬快高潮视频|国语自产少妇精品视频蜜桃|欧美专区一区|人人草人人爱|一级毛片在线观|欧美国产日韩另类视频区 | 天天射夜夜骑|日韩视频黄色|亚洲国产精品一区二区成人片国内|#NAME?|一二三区在线免费观看|国产九九在线视频 | 日本久久99成人网站|99视频在线免费看|亚洲一区成人在线观看|青草福利在线|中文字幕无线码中文字幕免费|亚洲视频h | 日日爱99|欧美成人黄激情免费视频|16—17女人毛片毛片同性|国产黄色免费片|久久久久国产精|欧美精品久久 | 免费三级网|看毛片网站|午夜影剧院|国产农村一级一级毛片|十八禁g=ay网站|精品国产乱码久久久久久蜜臀网站 | 国产www成人|干干操操|国产久一一精品|日韩综合在线播放|二区视频|九九国产视频 | 免费极品=aV一视觉盛宴|大陆少妇xxxx做受|懂色一区二区二区=av免费观看|女人的超长巨茎人妖在线视频|欧美激情国产精品视频一区二区|精产国品久久一二三产区区别 | 天天射夜夜骑|日韩视频黄色|亚洲国产精品一区二区成人片国内|#NAME?|一二三区在线免费观看|国产九九在线视频 | 特级毛片免费观看视频|国产精品视频久久久久久久|免费看=a级大片|浴室人妻的情欲HD三级|麻豆.=apk|在线片播放 | 强乱中文字幕=av一区乱码|1204国产成人精品视频|精品无码国产一区二区三区=aV|亚洲国产精品一区二区成人片不卡|99久久无码一区人妻=a片竹菊|无码中文字幕=av免费放 | tube国产麻豆|w两个世界完整免费观看超清完整|久久久亚洲精品动漫无码|久热久爱免费精品视频在线|国产嫩草在线视频|67149中文无码久久 | 一级女毛片|日本美女bb视频|尹人成人|亚洲成人=av观看|亚洲精品中文字幕制|91人成亚洲高清在线观看 | 国产大学生粉嫩无套流白浆|老司机久久99久久精品播放免费|日本国产三级|久久久久久久久久久久久久久久久久=av|欧美日本精品|涩涩91 | 一区二区欧美视频|亚洲日本无码一区二区三区四区卡|少妇做爰α片免费视频网站|久久色精品|91午夜在线观看|久久久久久亚洲精品中文字幕 又大又紧又粉嫩18p少妇|国内精品自线一区麻豆|欧美h版在线观看|狠狠艹夜夜干|黄色影院在线播放|日日拍拍 | 91久久青草|欧洲黄色毛片|伊人高清视频|久热综合|九久久久|视频色黄色毛片 | 国语精品对白露脸少妇网站|快好爽射给我视频|国产熟妇另类久久久久久|在线看免费视频|www久久九|亚洲综合欧美另类 | 亚洲第一视频专区|亚洲一区二区三区高清不卡|亚洲а∨天堂久久精品|亚洲一区二区三区麻豆|无码福利写真片视频在线播放|久久久人人人 | 久久99香蕉|中国XXX农村性视频|亚洲=aV日韩=aV男人的天堂在线|国产v亚洲v天堂=a|亚洲|这里只有精品在线播放|三年片在线视频中国 | 秋霞福利视频|亚洲精品1234区|国产一级久久久久|在线91|国产做=a爱片久久毛片=a片|天天爱天天做天天做天天吃中文 | 在线一区二区日韩|99只有精品|国产成人羞羞视频在线|www.成人网.com|久久在视频|日韩免费v=a | 国产麻豆另类=aV|极品久久久久|桃花色综合影院|国产夜恋视频在线观看|美女=av免费在线观看|久久久国产一区二区三区四区 |