avav在线看_国产性色AV高清在线观看_狠狠干影院樱桃视频整合全网影视:_成人av中文字幕_欧美久久一级_91久久丝袜国产露脸动漫

November 26, 2021

Hot Runners Play a Key Role in Optimizing System Balance 

Balance has an important influence on the optimization of an injection molding process and can sometimes be a limiting factor in validation. It plays a major role for processors who seek to produce flash-free, fully packed parts with uniform dimensions using the largest possible processing window.  Balance is a numeric translation of variation inherent to a specific mold, typically measured by comparing the difference between the heaviest and lightest parts. One of the goals of balance measurement is to minimize that variation, over which hot runners can have a significant influence.

This article will examine the process fundamentals of system and hot runner balance, and its impact on mold qualification. We will look at the factors that facilitate the development of well-designed hot runners, plus the causes of system imbalance. We will also examine the factors that influence short shot balance beyond geometric melt channel balance as well as how to measure system balance and how to set expectations based on specific end-use applications.

Why Worry About Balance?                       

Cavity balance in injection molding is one of several benchmarks required by the mold qualification process. During the assessment of the molding process, the hot runner can assist in fine-tuning balancing. While there are many sources, such as websites and publications, dedicated to why balance is important, there is little or no information on what constitutes “acceptable” balance. Nor is there widely accepted information on the most effective procedure to measure balance.

For many industry observers, it is unclear what system balance confirms. Does it highlight variation from cavity to cavity, or how much volume is needed to fill the mold? There is a lack of clarity surrounding the definition of injection molding balance, because these determinations are interpreted by the user and subjective in nature.

To have the largest potential process window when injection molding with multicavity tools, all mold cavities should fill at the same time. Cavity-to-cavity and shot-to-shot variation makes it difficult to consistently mold parts with uniform dimensions.

Molded part inconsistencies can take form in a variety of defects. Part inconsistency is obviously not desirable, but what are some of the real consequences of variation? Inconsistency means increased qualification time if a required specification cannot be met. It can increase the cost of poor quality, which can appear as increased scrap rate, additional inspection or increased warranty spend. Part-to-part variation can also limit the process window to make acceptable parts, ultimately reducing flexibility and the robustness of the process.

These results are all “above the water line” and can be measured directly. There are also multiple “below the water line” costs of inconsistent parts. These can be higher risk, expediting, buffer inventory, lost sales, unpredictable profit and loss, diminished customer loyalty and higher administrative costs. By minimizing variation, processors can create a more capable molding system and a mold that can produce more and better parts within the given specification.

Addressing Hot Runner System Imbalance    

Short shot balance is affected by many peripherals:

  • Injection molding machine (tonnage, platen condition, screw design)
  • Resin (type, quality, preparation)
  • Processing (injection profile, cooling time, shot size)
  • Mold (type of mold, venting, cooling layout, stiffness, part geometry)

Hot runner systems also have several factors that influence short shot balance. Key hot runner considerations include melt channel layout, heater layout, plate bolting and plate cooling. Other influences include gating styles, actuation and temperature control.

By simply changing resins from PC/ABS to polypropylene, balance on a multicavity tool improved from 65% to 93%. No changes were made to the mold cavity or hot runner to get this improvement, illustrating that resin type can have a large impact on short shot balance. Some resins will have substantial changes in viscosity, with small changes in temperature or shear. The interaction of the resin with processing and tool conditions will be different depending on the properties of the resin. The impact on balance can be positive or negative depending on the resin and tool.

Though hot runners can provide significant benefits to the molder, they increase the complexity of the mold and can also contribute to fill imbalance. When more than one mold cavity is required for molding, the question of balance can become an issue. It is important that all the gates perform identically. This is especially true when molding high-tolerance or thin-wall components for demanding end-use markets, such as medical and healthcare. If the gates do not all behave in the same manner, the mold can become unbalanced. Short shot balancing focuses on the volume of plastic that is less than needed for a fully packed and dimensionally stable part.

Valve stem timing can also have a significant impact on short shot balance. In a 32-cavity syringe barrel mold, short shot balance improved from 60% to 90% by changing valve stem actuation from individual pneumatic pistons for each drop to synchronizing all valve stems with UltraSync® plate actuation.

Thermal Uniformity Creates More Balanced Filling    

The goal of a hot runner is to deliver melt to every cavity of a mold, and its thermal profile can also influence balance through optimized design. Ideally, there are identical heat conditions for the resin, regardless of the flow path. Several factors can influence temperature variation, including heater technology, drop layout, manufacturing practices and other design factors. There is an engineered balance between the manifold material, thermocouple placement, heat inputs that occur at heaters and heat losses that occur at the lead-bearing components.

Husky hot runners offer very high levels of thermal uniformity. Their features include:  

  • Optimized thermal design: Manifolds are designed using strict guidelines based on engineering principles. Thermal finite element analysis (FEA) is used to analyze every manifold design. Heat inputs, heat losses and thermal profile are optimized for each application.
  • Validated manufacturing equipment and in-process inspections: Manifold heater manufacture and installation equipment is automated, and process checks are implemented to verify accurate heater element position.
  • Thermal uniformity inspection: All finished hot runners and manifold systems are measured and heat tested at final assembly. Prior to shipment, the thermal profile is reviewed against guidelines for compliance, with thermal imaging used to audit and troubleshoot.

Thermal Uniformity Requires Control  

A thermally uniform hardware system is only as good as its controller, which relies on accurate temperature signals, optimized and controlled algorithms, and rapid reaction time. The first and most important consideration is the accuracy of the thermocouple signal being used to determine the temperature of the mold. A control algorithm is as effective as the accuracy of the data its calculations are based on. If the temperature measurement is disrupted by high-voltage leaking onto the thermocouple lines, then this will be interpreted as being the correct temperature, when in reality, it is not. The Husky Altanium® mold controller utilizes isolated thermocouple inputs that eliminate the effects of electrical noise and ensure that the temperature signal is true.

The second control component is the control algorithm. The algorithm contains the instructions for modulating the power output to adjust to variations in the process based on feedback from the thermocouples. In the case of the Altanium controller, this process is managed using Active Reasoning Technology (ART), which automatically optimizes the control of each heater to its specific operating environment.

The final control component is reaction time. This is important, because the longer it takes a command to be processed, the more out of tolerance the temperature will be once the calculation from the algorithm is executed. Using a distributed control architecture reduces the distance a signal must travel, which enables commands to be carried out in the shortest amount of time possible.

In a distributed architecture, the temperature control and power-switching circuitry are integrated into a single card. The temperature control algorithm is executed right on the board, allowing the fastest possible reaction time. The operator interface’s primary purpose is to send and monitor configuration parameters to the cards. The result is the most accurate and repeatable temperature control possible.

Gating Options Play a Major Role 

The gate is a restricting feature where plastic enters the cavity. Today, hot tip (thermal) gating and valve (mechanical) gating are the two options available for hot runner gating. Static plastic freezes at the gate during hold and creates a membrane or skin that breaks away from the part when the mold opens. The frozen slug left in the gate is blown out at the start of the next cycle. This sequence of this “plug blow” event between several gates can be somewhat random, which can show as imbalance, especially with very high cavitation molds. This is influenced by the slight variation between cavities and gates due to tolerance. Even the supplied resin itself is not truly homogenous, carrying a range of molecular weight.  Hot runner temperature setpoints can be adjusted to decrease these influences on balance.

The other gating option—valve gating—is a mechanical method of control, offering higher gate quality. It offers more shot-to-shot consistency compared with thermal gating, because the mechanical opening and closing of the gate eliminates inconsistencies related to thermal gating. Along with no gate vestige issues, the gate diameter is larger, resulting in less gate shear and reduced stress in the part.

As the flow front reaches the end of fill, the increasing cavity pressure helps equalize the flow balance differences between cavities. Some part features can also have the same effect on the balance and may not be at the end of fill. For example, the tamper band on a closure can “choke” or “meter” the flow through that area of the part. In this case, it would be best to perform troubleshooting procedures before those features take effect.

For Percentage-of-Fill, balance is evaluated at the transition point between velocity control and pressure control (V/P switchover). For a 48-cavity tool with a 5-gram part, a processor would evaluate balance at 90% or 95% of the total shot weight of 240 grams. The Percentage-of-Fill method serves as a tool to identify outliers (parts filled less than 90%) at the transition from velocity control to pressure control. Parts that are less than 90% full at the transition point could have molding defects.

The First-to-Fill method is more suited for troubleshooting, to investigate specific defects or problems with the molding system. Transition point (V/P switchover) is set so that the first part to fill is the desired percentage of the final part weight. All other parts will weigh less than this first part to fill. For example, the first part to fill is 95% of the final part weight.

Processors should manage their expectations when measuring the short shot balance of their injection molding process. The first step is to determine what procedure is right for the processor. Husky recommends the Percentage-of-Fill method (95%). The next step is to set a realistic expectation for the procedure, with the understanding that systems with valve gating typically deliver better balance than thermal gating systems. These are fair expectations that need to be tempered, since other factors can adversely influence variation and ultimately short shot balance.

If the mold under qualification exceeds these values, the process should continue. Investigate the results, and if the issue is not identified, document the results and continue with the qualification. If there is an issue (e.g., dimensional problem), a troubleshooting balance study should be completed to look for correlation.

In one example with a 144-cavity hot tip system, two contamination issues were resolved. Balance improved from 67% to 85%, and finally to 93%. In another example, the greatest influence on balance was the mold’s cooling water pressure.

It should be understood that short shot balance testing represents only a confirmation step, which attributes a variation measurement to the mold. It does not cast any negative judgement regarding the design, construction and function of the overall hot runner design.

Conclusion  

Short shot balance plays an important role in optimizing the injection molding process. One of the most important goals of balance measurement is to minimize variation between the cavities by measuring part weight. Short shot balance measurement is an important evaluation tool that can be used during mold qualification to troubleshoot specific issues. There are different procedures that can be used to check short shot balance, with varying results on the same system. It is important to pick the best procedure to fit the needs of the process and match the expectations to the procedure.

Several factors influence the short shot balance performance of a specific tool. Addressing the imbalances of a molding system requires a focused look at influences on variation. A reduction in process variation involves improvements in all aspects of the processing system. The hot runners can have a significant influence on short shot balance, and this is one of the most common considerations during mold qualification. Husky optimizes factors to minimize variation and improve consistency, including 100% geometrically balanced hot runner system designs, thermally uniform hot runners with precise temperature control and the elimination of gate open-close variation with Husky UltraSync technology.

主站蜘蛛池模板: 天天干少妇|中文字幕在线亚洲日韩6页|v片免费在线观看|国产人妻人伦=aV|日本老妇和子乱视频在线观看|少妇又色又紧又爽又高潮 | 成年免费观看黄页网站|亚洲毛片免费在线观看|欧美视频一区二区在线|欧美人精品XO|WWW夜片内射视频在观看视频|久久影院免费观看 | 日本最新免费二区|亚洲无人区一区二区三区|1769国内精品视频在线播放|色姑娘天天干|日本ssswww|国产vps毛片 | 免费无码又爽又刺激高潮虎虎视频|国产性自爱拍偷在在线播放|成年人色视频|国产口爆吞精在线视频观看|2022国产爱性原创视频|最新版天堂中文在线 | 亚洲=aV首页在线观看|97干婷婷|中文字幕人妻=aV一区二区|国产精品大片|天天操狠狠操网站|成人福利视频在 | #NAME?|www.夜夜骑|亚洲人成网站精品片在线观看|视频在线观看入口黄最新永久免费国产|日本免费一级|巨大垂乳日本熟妇 | 最新中文乱码字字幕在线|亚洲色无码中文字幕|久久久精品免费网站|高潮毛片无遮挡高清视频播放|欧美黄色一级带|国产操女人 | 区美毛片|国产精品久久久久久久久软件|亚洲精品欧美一区二区三区|国产性色|国产精品家庭影院|日韩中文第一页 性生大片免费观看668|亚洲成人=av影片|毛片大全真人在线|国产老女人高潮大全|中文字幕丰满|一本久久久久 | 中文字幕人妻高清乱码|久久久无码人妻精品一区|国产精品第八页|国产美女被遭强高潮网站不再|石原莉奈无删减在线观看|欧美成年网站 | 亚洲精品久久久久久中文|亚洲三级一区|亚洲=aV中文无码字幕色|国产一区二区三区无码免费|日韩偷拍自拍|99久久精品免费看 | 午夜福利免费院|久草成色在线|一区二区国产高清视频在线|哪里有免费的黄色网址|亚洲久久在线观看|人妻中文无码就熟专区 | 亚洲国产精品99|曰本女人牲交视频免费|国产成人8x人网站在线视频|精品无码一区在线观看|毛片一区|jk自慰到不停喷水 | 蜜臀=aⅴ国产精品久久久国产老师|中文在线一区二区三区|小宝极品内射国产在线|#NAME?|影音先锋啪啪=aV资源网站|国产精品久久久久网站 | 成人=av一区二区三区在线观看|欧美日韩中文字幕一区二区三区|#NAME?|青青草视频网|日韩=av在线一区二区三区|老司机在线精品视频播放 | 国产精品爽爽=aV在线观看|国产蝌蚪视频在线观看|超碰伊人|国产二区不卡|亚洲高清欧美日韩一区二区三区|无码成人中文字幕不卡 | 国语精品对白露脸少妇网站|快好爽射给我视频|国产熟妇另类久久久久久|在线看免费视频|www久久九|亚洲综合欧美另类 | 色综合天天综合高清网国产在线|国产精品九九九九|国产乱妇乱子|国产色情理论在线观看视频|久久影院精品|寂寞骚妇被后入式爆草抓爆 | 色综合天天综合高清网国产在线|国产精品九九九九|国产乱妇乱子|国产色情理论在线观看视频|久久影院精品|寂寞骚妇被后入式爆草抓爆 | 国产一二区在线观看|黄在线免费|欧美大片www|无码h片在线观看网站|亚洲图区综合网|伊人久久亚洲 成人一区二区三区免费视频|日本=a=a=a=a片毛片免费观蜜桃|在线观看亚洲欧美|日本一夲道无码不卡免费视频|穿乳环蒂环上锁调教老师|国产成人综合一区二区三区 | 国内精品久久国产|国产一区二区三区内射高清|一二三四视频在线社区中文字幕2|大地资源在线观看中文免费|午夜精品免费观看|无码成人18禁动漫网站 | 亚洲第一视频专区|亚洲一区二区三区高清不卡|亚洲а∨天堂久久精品|亚洲一区二区三区麻豆|无码福利写真片视频在线播放|久久久人人人 | 91精品国产一区二区三区四区在线|午夜大尺度福利视频|eeuss亚洲精品久久|#NAME?|一品色堂|性一交一乱一伦一色一情丿按摩 | 国内一级片在线观看|精品成人佐山爱一区二区|色偷偷9999WWW|午夜香吻免费观看视频在线播放|久久任你操|国=a产久v久伊人 | 久久久综合九色综合88|#NAME?|韩国激情3小时14分合集|免费国产美女视频永久免费|国产精品毛片大码女人|草逼视频观看 | h七七www色午夜日本|九九热视频精品在线观看|麻豆91地址|美女裸体无遮挡黄污网站|亚洲欧美久久精品|在线观看区 | 黄色一级短视频|啊片在线观看|91精品xxxx瑜伽裤日本|成人免费观看cn|亚洲熟妇色自偷自拍另类|免费=a观看 | 国产一区二区三区久久悠悠色=av|成人免费视频看看|久久国产精品-国产精品|男人J进女人J啪啪无遮挡|成人片黄网站=a毛片免费|久久精品91视频 | 蓝宇在线|国产成人精品午夜视频|成人在线免费播放视频|JZZIJZZIJ在线观看亚洲熟妇|久久99热国产|亚洲=aV男人的天堂在线观看 | 亚洲女人天堂在线|四虎福利影院|日韩视频在线观看视频|欧美日韩成人一区|黑人异族巨大巨大巨粗|超碰在线c=ao | 丰满人妻熟妇乱又伦精品|黑白配高清国语免费观看|#NAME?|亚洲视频高清不卡在线观看|99ri=av国产在线观看|丝袜美腿视频一区二区三区 | 日日操夜夜撸|日本69xxxxxxxx|性欧美videos另类hd|日本一区二区三区久久久久久久久不|国产午夜福利精品一区|久久国产亚洲精品赲碰热 | 成人一区二区三区免费视频|日本=a=a=a=a片毛片免费观蜜桃|在线观看亚洲欧美|日本一夲道无码不卡免费视频|穿乳环蒂环上锁调教老师|国产成人综合一区二区三区 | 一级女毛片|日本美女bb视频|尹人成人|亚洲成人=av观看|亚洲精品中文字幕制|91人成亚洲高清在线观看 | 99热国内精品永久免费观看|国产欧美高清在线观看|性一交一乱一交=a片|99视频99|国产精品成=av人在线视午夜片|久久网一区 | 午夜福利免费院|久草成色在线|一区二区国产高清视频在线|哪里有免费的黄色网址|亚洲久久在线观看|人妻中文无码就熟专区 | 欧美乱色伦图片区|精国产品一区二区三区四季综|午夜免费观看视频|女人18毛片水真多免费看|久久久久久免费观看|91精品一 | 国内一级片在线观看|精品成人佐山爱一区二区|色偷偷9999WWW|午夜香吻免费观看视频在线播放|久久任你操|国=a产久v久伊人 | 天堂色=av|аⅴ天堂中文在线网官网|#NAME?|日本=a在线看|91免费视频网址|亚洲精品久久久久久久久久久 | j=ap=anese护士高潮|12裸体自慰免费观看网站|免费=a一毛片|欧美人禽zozo动人物杂交|h动漫在线女生向在线精品|狠狠躁夜夜躁人人爽天天2020 | 99久久成人精品国产网站|九九在线|亚洲播播|快射视频在线观看|日本毛片在线|国产高清无码视频在线观看 国产精品二区影院|久久99热精品|一级黄片毛片免费|sihu在线|亚洲精品女|99vv1com这只有精品 | 久久网国产|国产精品久99|国产hsck在线亚洲|性导航唐人社区|久久精品国产亚洲=aV高清色欲|久久99精品久久久久久久夜夜爽 |